K, OF PROJECTIVE r-SPACE
LESLIE G. ROBERTS

ABSTRACT. Let 4 be a commutative ring, and let X =projective
r-space over A. Then we prove that K, of the category of locally
free sheaves of finite type on X is isomorphic to the direct sum of
r~+1 copies of K1(4).

1. Introduction. Let A be a commutative ring, and let X =Pr(4)
=Proj A[Ty, - - -, T,], where T; are indeterminants. Let U be the
category of locally free sheaves of finite type on X. The quasi-
coherent Ox-modules form an abelian category and U is an admissible
subcategory. Then the groups K¢(V) and K;(V) as well as the auto-
morphism category .U are defined as in Chapter VIII of [1].

Let ®(A4) be the category of projective A-modules of finite type.
Then there are group homomorphisms K(4)*sK(P7(4)) induced
by PP ®40(n), PE®(A). It is proved in SGA 6, Exposé 6, The-
orem 1.1 that the k;, 0<:<r, set up an isomorphism @j., K¢(4)
=K (V).

It is the aim of this paper to prove a corresponding result for K;(0).
That is, the homomorphisms K;(4)™,K,(V) induced by (P, )
—(P®40(n), a®1) set up an isomorphism @DI., K;(4)=K,(V).
(PE®4), a&Auta(P).)

2. Preliminaries. The definitions and basic properties of Proj can
be found in [2, §2]. Some properties we will use are the fol-
lowing: Let f:X—Spec 4 be the structure morphism. Let
B=A[T,, - - -, T,], and let ® be the category of graded B-modules,
the morphisms being B-linear maps of degree 0. Let € be the cate-
gory of quasi-coherent Ox-modules. Then ~ is an exact func-
tor from ® to @, and the functor I's:C—® is defined by I'sx(F)
= D.ez (X, F(n)).

Then we have ~: I'x=1¢. Furthermore (®.cz M,)~ depends only
on @Dazn, Ma, for any n,. Also 0(n) =B(n)~, where B(#)m=Bmin.

If FEe, PE®(A), then by P®4F, I mean f*(P)®ey F. Then if
MER, (PRiM)y*=PQ s M".

We also have the following, which follow from Propositions 1.3
and 1.6 of SGA 6, Exposé 6 respectively:

TuEOREM A. If V is a locally free Ox-module of finite type, then 3
an integer no such that for nZnq:
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(1) Rifx(V(n))=0 for i=1,

(i) fx(V(n))=T'(V(n)) isin ®(4),

(ii1)) Pazne fs(V(8)) = D nzu, '(V(n)) is a graded B-module of
finite presentation.

THEOREM B. Let M be a graded B-module of finite presentation, flat
over A. Then there exists a resolution 0—L,,— - -+ =»Ly—M—0
where the L; are graded projective B-modules of finite type.

3. Proof that the &; generate K,;(V). Let V&obj U, and let a be
an automorphism of V. Then by Theorem A, 3, such that M
= @0, I'(V(n)) is a graded B-module of finite presentation.
T«(a) gives an automorphism of M in the category ®. By Theorem
A (ii), T'(V(n)) is a projective A-module of finite type. Hence The-
orem B applies, to give a resolution

0—-»L/,yZ—Ll —»---—>Li—>M-—>0

of M by graded projective B-modules of finite type.

Let 3¢(B) be the category of (nongraded) B-modules that have a
resolution of finite length by (nongraded) projective B-modules of
finite type. L{ is projective in ®, so by Proposition 4.5(a), Chapter
VIII of [1], a lifts to an automorphism &, (in ®) of Lo=L{® Lj. We
then have an exact sequence 0—N,—L—M—0. N,&3(B) by
Proposition 6.3, Chapter III of [1]. Thus (N, aol Ny)e Z(B. There
exists a graded projective B-module of finite type mapping onto N,
so we can repeat this process, to obtain a resolution

0— (Lr+1, ar+l) - (Ln ar) > (LO’ aO) - (Mv a) —0

of (M, @) in >_®, where L; is a graded projective B-module of finite
type. We can terminate the resolution with L,,, because Theorem B
implies that M has homological dimension =r-+1.

Let I=(To, - + -, Tv)CB. Then L;/IL;=L; is a graded projective
A-module of finite type, and by Proposition 3.3, Chapter XII of
[1], Z;® 4B=L; as graded B-modules.

If we write L;~ @, L, where L;; is of degree j, then L;
>~ @; L;j®4B= @;L;;, where L;;=L;;®4B.

If j; <js, there are no nonzero morphisms in ® from L;;, to L;j, since
such a morphism is determined by the image of L.;®44, and the
degree j; component of L, is zero. Therefore the matrix representing
o, in the above direct sum decomposition of L; is upper triangular.
Let o;; be the diagonal entries of this matrix, where a;;: Li;—Ly;.

All ®-homomorphisms a;;: L;;—L;; are of the form &;;®1, where
a.‘jEHomA(Iij, Z';j).
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If we apply the functor ~ we get a resolution
0— (I~4r+1, &r+l) - (ir’ &r) > (zO; &0) g (Vr a) —0
in 2,0.
Thus ky(V, @) = 2518 (— 1)k (L;, &), where Ey(V, @) denotes the
image in K;(0) of (V, &) € 2.
Because the matrices for the &; are triangular, we have

ky(Li, &) = 22 ki(Lij, &37).
i

But L;j=L;;®4(0(—j)) (where L;; is now regarded as being of

degree 0 as an 4-module). So
ki(Liy @) = 2 ky(Li; ®4 0(—5), @i ® 1).
i

Thus the images of k,: K;(4)—K;(V), where k, is given by ks (M, o)
=(M®40(n),a®1) generate K (V) (MEP(A4)).

4. Proof that the k;, 0<7=<r, generate K;(V). Since Ty, - - -, Ty
form a B-sequence, the Koszul complex gives an exact sequence

0—>B(rr¢{)_, . ._,B("il)_,. ..—>> Bt1l 5 B— A4 —0.

The maps in the sequence (except for the map B—A) are of de-
gree 1. If we shift the gradings so as to make the maps of degree 0,
and apply the functor ~, we get exact sequences in U
0—-0(m) =0+ 1)+ —o(n + 2)(H§l)—> s> 0r+n+1)—0

for all n. If ky(A™, «) is an arbitrary element of K;(4), then we get
an exact sequence

05U ®40(n),a ®1) > (A" ®@40(n+ 1), a® 1)
= o (A" R4+ 1+ 1),a ®1)—0.
Hence we have the relations
r+1 + 1
> (—1)-‘(' . )h,,+.~, Va.
=0 1

Thus the images of k;, 0 <1 <7, generate K;(V). (The same relations
hold in the K,-case, as is shown in SGA 6, Exposé 6.)

5. Independence of the k;, 0<i<r. Every element in K;(4) is of
the form &;(4", a), hence every element in #;K,(4) is of the form
k1(0(3)", a;®1). Suppose we have a relation in K;(V) of the form
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2 hi(x) = 2 k(00 i ® 1) = 0
=0 =0
where x; =k (4%, a;) EK,1(A4), o; EAuta(47).
This can be written in the form K;(F, a) =0 where F= @}., 0(s)%,
a= @ (®1).
Then we also have Y 5o k1 (0(G+n)%, a;® aloism)=0 for all n.
k1(F, a) =0 means that there exist a finite number of exact se-
quences

0— (G, vi) = (Hs, 8:) = (15,00 — 0,

1
@ 0—(Gf,v/) = (H,8{) > (I],0{) >0

in Z‘U, and objects M;, N; with automorphisms a;, B:; of, B re-
spectively, such that in the free abelian group on isomorphism classes
of objects in U, we have

(F,a) = Z (G, vi) + (Tiy00) — (Hy,89]
+ 2 (@80 = 6o — U, 8)]
+ E (s, ai) — (M, @) — (M5, 8)]
+ E (5, af) + (N, 8]) — (N5, @/ B))]-

Corresponding relations are obtained for (F(n), a(n)) by tensoring
with 0(n).

By Theorem A (i), there exists an 7, such that if n=n,, all the
exact sequences (1) (after tensoring with O(n)) remain exact after
applying the functor fs.

Hence for n=n,, we have

ki(fxF(n), fsa(n)) = 0 in K,(A).
But
fx(0(@)™, a; ® low) = (47, i) 4 fx(0(3)) = (4%, ;) @4 A%,

where g;=rank over 4 of the ith graded component of B. Thus we
have relations in K;(4)

2 Domixi=0, n=ny, wherex; = k(47 a;) € K1(4).

=0

The rest of the proof is now identical with that in SGA 6, Exposé 6,
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for the K, case. We have:

@ S0 om0 a2,

=0

where o, =0 by definition, if 2<0. This follows from the exactness
of the Koszul complex. Using (3) we get

Z( > (- 1)'(' + l)a,..+,+,-..) %

J=0

-3 1)*( N(E omirseen) =0,

=0 j=0

If i#r+1, no+r—i=mn,, so by (2) we have D g Tprrrii®i=0.
We are left with, for t=7r+41,

.
2 Tng-14i%; = O.

=0

This is (2) for n=n,—1. We can continue down by induction to
n= —r, yielding o¢x, =0. Butgo=1,sox,=0.

Forn=—r+41, (2) saysopxr1+01%,=0. .. x,,=0.

In a similar way we get all the x;=0. Thus the relation Y ;.o (%)
=0=x;=0,0=7=r. Thus we have proved:

THEOREM. Let A be a commutative ring, and O the category of locally
free sheaves on P7(A). Then the homomorphisms hi:Ki(A)—K1(V)
induced by (Pr, a)—(P ® 40(n), a®1) satisfy the relations

Z( 1)*( ) hisn = 0

=0
for all m, and ko, - - -, k, set up an isomorphism Di_o Ki(4)=K:().

6. Further remarks. (1) The result for K, is proved in SGA 6,
Exposé 6, with more general schemes in place of Spec 4, but I do not
know how to give the proof for K;, except with an affine base scheme.

(2) Ki(A4), Ko(V) and K;(V) are all Ko(4)-modules, and the the-
orem can be stated in the form

Ko(V) ®ryuy Ki(4) = K1(V).

In this form it generalizes the result of [4] for the case of projec-
tive r-space over an algebraically closed field.
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