K_1 OF PROJECTIVE r-SPACE

LESLIE G. ROBERTS

ABSTRACT. Let A be a commutative ring, and let X = projective r-space over A. Then we prove that K_1 of the category of locally free sheaves of finite type on X is isomorphic to the direct sum of r+1 copies of $K_1(A)$.

1. Introduction. Let A be a commutative ring, and let $X = P^r(A)$ = Proj $A[T_0, \dots, T_r]$, where T_i are indeterminants. Let $\mathfrak V$ be the category of locally free sheaves of finite type on X. The quasi-coherent $\mathfrak O_X$ -modules form an abelian category and $\mathfrak V$ is an admissible subcategory. Then the groups $K_0(\mathfrak V)$ and $K_1(\mathfrak V)$ as well as the automorphism category $\sum \mathfrak V$ are defined as in Chapter VIII of [1].

Let $\mathcal{O}(A)$ be the category of projective A-modules of finite type. Then there are group homomorphisms $K_0(A) \xrightarrow{h_n} K_0(P^r(A))$ induced by $P \to P \otimes_A \mathcal{O}(n)$, $P \in \mathcal{O}(A)$. It is proved in SGA 6, Exposé 6, Theorem 1.1 that the h_i , $0 \le i \le r$, set up an isomorphism $\bigoplus_{i=0}^r K_0(A) \cong K_0(V)$.

It is the aim of this paper to prove a corresponding result for $K_1(\mathbb{U})$. That is, the homomorphisms $K_1(A) \xrightarrow{h_n} K_1(\mathbb{U})$ induced by $(P, \alpha) \to (P \otimes_A \mathfrak{O}(n), \alpha \otimes 1)$ set up an isomorphism $\bigoplus_{i=0}^r K_1(A) \cong K_1(\mathbb{U})$. $(P \in \mathfrak{O}(A), \alpha \in \operatorname{Aut}_A(P).)$

2. **Preliminaries.** The definitions and basic properties of Proj can be found in $[2, \S 2]$. Some properties we will use are the following: Let $f: X \rightarrow \operatorname{Spec} A$ be the structure morphism. Let $B = A[T_0, \dots, T_r]$, and let $\mathfrak B$ be the category of graded B-modules, the morphisms being B-linear maps of degree 0. Let $\mathfrak C$ be the category of quasi-coherent $\mathfrak O_X$ -modules. Then $\widetilde{}$ is an exact functor from $\mathfrak B$ to $\mathfrak C$, and the functor $\Gamma_*: \mathfrak C \rightarrow \mathfrak B$ is defined by $\Gamma_*(F) = \bigoplus_{n \in \mathbb Z} \Gamma(X, F(n))$.

Then we have $\sim \Gamma_* = 1_C$. Furthermore $(\bigoplus_{n \in \mathbb{Z}} M_n)^{\sim}$ depends only on $\bigoplus_{n \geq n_0} M_n$, for any n_0 . Also $\mathfrak{O}(n) = B(n)^{\sim}$, where $B(n)_m = B_{m+n}$. If $F \subset \mathfrak{O}$, $P \subset \mathfrak{O}(A)$, then by $P \otimes_A F$, I mean $f^*(P) \otimes_{\mathfrak{O}_X} F$. Then if $M \subset \mathfrak{G}$, $(P \otimes_A M)^{\sim} = P \otimes_A M^{\sim}$.

We also have the following, which follow from Propositions 1.3 and 1.6 of SGA 6, Exposé 6 respectively:

THEOREM A. If V is a locally free O_X -module of finite type, then \exists an integer n_0 such that for $n \ge n_0$:

Received by the editors February 6, 1970.

AMS 1969 subject classifications. Primary 1405, 1455.

Key words and phrases. K_1 , locally free sheaf, projective r-space.

- (i) $R^{i}f_{*}(V(n)) = 0$ for $i \ge 1$,
- (ii) $f_*(V(n)) = \Gamma(V(n))$ is in $\mathfrak{O}(A)$,
- (iii) $\bigoplus_{n\geq n_0} f_*(V(n)) = \bigoplus_{n\geq n_0} \Gamma(V(n))$ is a graded B-module of finite presentation.

THEOREM B. Let M be a graded B-module of finite presentation, flat over A. Then there exists a resolution $0 \rightarrow L_{r+1} \rightarrow \cdots \rightarrow L_0 \rightarrow M \rightarrow 0$ where the L_i are graded projective B-modules of finite type.

3. Proof that the h_i generate $K_1(\mathbb{U})$. Let $V \in \text{obj } \mathbb{U}$, and let α be an automorphism of V. Then by Theorem A, $\exists n_0$ such that $M = \bigoplus_{n \geq n_0} \Gamma(V(n))$ is a graded B-module of finite presentation. $\Gamma_*(\alpha)$ gives an automorphism of M in the category \mathfrak{B} . By Theorem A (ii), $\Gamma(V(n))$ is a projective A-module of finite type. Hence Theorem B applies, to give a resolution

$$0 \to L'_{r+1} \to L'_r \to \cdots \to L'_0 \to M \to 0$$

of M by graded projective B-modules of finite type.

Let $\mathfrak{K}(B)$ be the category of (nongraded) B-modules that have a resolution of finite length by (nongraded) projective B-modules of finite type. L_0' is projective in \mathfrak{B} , so by Proposition 4.5(a), Chapter VIII of [1], α lifts to an automorphism α_0 (in \mathfrak{B}) of $L_0 = L_0' \oplus L_0'$. We then have an exact sequence $0 \to N_0 \to L_0 \to M \to 0$. $N_0 \in \mathfrak{K}(B)$ by Proposition 6.3, Chapter III of [1]. Thus $(N_0, \alpha_0 \mid N_0) \in \sum \mathfrak{B}$. There exists a graded projective B-module of finite type mapping onto N_0 , so we can repeat this process, to obtain a resolution

$$0 \to (L_{r+1}, \alpha_{r+1}) \to (L_r, \alpha_r) \to \cdots \to (L_0, \alpha_0) \to (M, \alpha) \to 0$$

of (M, α) in $\sum B$, where L_i is a graded projective *B*-module of finite type. We can terminate the resolution with L_{r+1} because Theorem B implies that M has homological dimension $\leq r+1$.

Let $I = (T_0, \dots, T_r) \subset B$. Then $L_i/IL_i = \overline{L}_i$ is a graded projective A-module of finite type, and by Proposition 3.3, Chapter XII of $[1], \overline{L}_i \otimes_A B \cong L_i$ as graded B-modules.

If we write $\overline{L}_i \cong \bigoplus_j \overline{L}_{ij}$, where \overline{L}_{ij} is of degree j, then $L_i \cong \bigoplus_j \overline{L}_{ij} \otimes_A B = \bigoplus_j L_{ij}$, where $L_{ij} = \overline{L}_{ij} \otimes_A B$.

If $j_1 < j_2$, there are no nonzero morphisms in \mathfrak{B} from L_{ij_1} to L_{ij_2} , since such a morphism is determined by the image of $\overline{L}_{ij_1} \otimes_A A$, and the degree j_1 component of L_{ij_2} is zero. Therefore the matrix representing α_i in the above direct sum decomposition of L_i is upper triangular. Let α_{ij} be the diagonal entries of this matrix, where $\alpha_{ij}: L_{ij} \to L_{ij}$.

All \mathfrak{B} -homomorphisms $\alpha_{ij}: L_{ij} \to L_{ij}$ are of the form $\bar{\alpha}_{ij} \otimes 1$, where $\bar{\alpha}_{ij} \in \operatorname{Hom}_{A}(\bar{L}_{ij}, \bar{L}_{ij})$.

If we apply the functor ~ we get a resolution

$$0 \to (\tilde{L}_{r+1}, \, \tilde{\alpha}_{r+1}) \to (\tilde{L}_r, \, \tilde{\alpha}_r) \to \cdots \to (\tilde{L}_0, \, \tilde{\alpha}_0) \to (V, \, \alpha) \to 0$$

in $\sum v$.

Thus $k_1(V, \alpha) = \sum_{i=0}^{r+1} (-1)^i k_1(\tilde{L}_i, \tilde{\alpha}_i)$, where $k_1(V, \alpha)$ denotes the image in $K_1(V)$ of $(V, \alpha) \in \sum_i V$.

Because the matrices for the $\tilde{\alpha}_i$ are triangular, we have

$$k_1(\tilde{L}_i, \tilde{\alpha}_i) = \sum_i k_1(\tilde{L}_{ij}, \tilde{\alpha}_{ij}).$$

But $\overline{L}_{ij} = \overline{L}_{ij} \otimes_A (\mathfrak{O}(-j))$ (where \overline{L}_{ij} is now regarded as being of degree 0 as an A-module). So

$$k_1(\tilde{L}_i, \tilde{\alpha}_i) = \sum_i k_1(\overline{L}_{ij} \otimes_A \mathfrak{O}(-j), \bar{\alpha}_{ij} \otimes 1).$$

Thus the images of $h_n: K_1(A) \to K_1(U)$, where h_n is given by $h_n(M, \alpha) = (M \otimes_A O(n), \alpha \otimes 1)$ generate $K_1(U)$ $(M \in O(A))$.

4. Proof that the h_i , $0 \le i \le r$, generate $K_1(\mathbb{U})$. Since T_0, \dots, T_r form a B-sequence, the Koszul complex gives an exact sequence

$$0 \to B^{\binom{r+1}{r+1}} \to \cdots \to B^{\binom{r+1}{l}} \to \cdots \to B^{r+1} \to B \to A \to 0.$$

The maps in the sequence (except for the map $B \rightarrow A$) are of degree 1. If we shift the gradings so as to make the maps of degree 0, and apply the functor \sim , we get exact sequences in v

$$0 \to \mathfrak{O}(n) \to \mathfrak{O}(n+1)^{r+1} \to \mathfrak{O}(n+2)^{\binom{r+1}{2}} \to \cdots \to \mathfrak{O}(r+n+1) \to 0$$

for all n. If $k_1(A^m, \alpha)$ is an arbitrary element of $K_1(A)$, then we get an exact sequence

$$0 \to (A^m \otimes_A \mathfrak{O}(n), \alpha \otimes 1) \to (A^m \otimes_A \mathfrak{O}(n+1)^{r+1}, \alpha \otimes 1)$$
$$\to \cdots \to (A^m \otimes_A \mathfrak{O}(n+r+1), \alpha \otimes 1) \to 0.$$

Hence we have the relations

$$\sum_{i=0}^{r+1} (-1)^i \binom{r+1}{i} h_{n+i}, \quad \forall n.$$

Thus the images of h_i , $0 \le i \le r$, generate $K_1(\mathbb{U})$. (The same relations hold in the K_0 -case, as is shown in SGA 6, Exposé 6.)

5. Independence of the h_i , $0 \le i \le r$. Every element in $K_1(A)$ is of the form $k_1(A^r, \alpha)$, hence every element in $k_iK_1(A)$ is of the form $k_1(0)(i)^{r_i}$, $\alpha_i \otimes 1$). Suppose we have a relation in $K_1(0)$ of the form

$$\sum_{i=0}^{r} h_{i}(x_{i}) = \sum_{i=0}^{r} h_{1}(\mathfrak{O}(i)^{r_{i}}, \alpha_{i} \otimes 1) = 0$$

where $x_i = k_1(A^{r_i}, \alpha_i) \in K_1(A), \alpha_i \in Aut_A(A^{r_i}).$

This can be written in the form $K_1(F, \alpha) = 0$ where $F = \bigoplus_{i=0}^r \mathfrak{O}(i)^{r_i}$, $\alpha = \bigoplus (\alpha_i \otimes 1)$.

Then we also have $\sum_{i=0}^{r} k_1(0(i+n)^{r_i}, \alpha_i \otimes_A 1_{0(i+n)}) = 0$ for all n. $k_1(F, \alpha) = 0$ means that there exist a finite number of exact sequences

(1)
$$0 \to (G_i, \gamma_i) \to (H_i, \delta_i) \to (I_i, \sigma_i) \to 0, \\ 0 \to (G'_i, \gamma'_i) \to (H'_i, \delta'_i) \to (I'_i, \sigma'_i) \to 0$$

in $\sum \mathcal{V}$, and objects M_i , N_j with automorphisms α_i , β_i ; α'_j , β'_j respectively, such that in the free abelian group on isomorphism classes of objects in $\sum \mathcal{V}$, we have

$$(F, \alpha) = \sum_{i} [(G_{i}, \gamma_{i}) + (I_{i}, \sigma_{i}) - (H_{i}, \delta_{i})]$$

$$+ \sum_{j} [(H'_{j}, \delta'_{j}) - (G'_{j}, \gamma'_{j}) - (I'_{j}, \delta'_{j})]$$

$$+ \sum_{i} [(M_{i}, \alpha_{i}\beta_{i}) - (M_{i}, \alpha_{i}) - (M_{i}, \beta_{i})]$$

$$+ \sum_{i} [(N_{j}, \alpha'_{j}) + (N_{j}, \beta'_{j}) - (N_{j}, \alpha'_{j}\beta'_{j})].$$

Corresponding relations are obtained for $(F(n), \alpha(n))$ by tensoring with O(n).

By Theorem A (i), there exists an n_0 such that if $n \ge n_0$, all the exact sequences (1) (after tensoring with O(n)) remain exact after applying the functor f_* .

Hence for $n \ge n_0$, we have

$$k_1(f_*F(n), f_*\alpha(n)) = 0$$
 in $K_1(A)$.

But

$$f_*(\mathfrak{O}(i)^{r_i}, \alpha_i \otimes 1_{\mathfrak{O}(i)}) = (A^{r_i}, \alpha_i) \otimes_A f_*(\mathfrak{O}(i)) = (A^{r_i}, \alpha_i) \otimes_A A^{\sigma_i},$$

where σ_i =rank over A of the *i*th graded component of B. Thus we have relations in $K_1(A)$

(2)
$$\sum_{i=0}^{r} \sigma_{n+i} x_i = 0, \quad n \geq n_0, \text{ where } x_i = k_1(A^{r_i}, \alpha_i) \in K_1(A).$$

The rest of the proof is now identical with that in SGA 6, Exposé 6,

for the K_0 case. We have:

(3)
$$\sum_{i=0}^{r+1} (-1)^{i} {r+1 \choose i} \sigma_{p-i} = 0, \qquad p \ge 1,$$

where $\sigma_k = 0$ by definition, if k < 0. This follows from the exactness of the Koszul complex. Using (3) we get

$$\sum_{j=0}^{r} \left(\sum_{i=0}^{r+1} (-1)^{i} {r+1 \choose i} \sigma_{n_0+r+j-i} \right) x_j$$

$$= \sum_{i=0}^{r+1} (-1)^{i} {r+1 \choose i} \left(\sum_{j=0}^{r} \sigma_{n_0+r+j-i} x_j \right) = 0.$$

If $i\neq r+1$, $n_0+r-i\geq n_0$, so by (2) we have $\sum_{j=0}^r \sigma_{n_0+r+j-i}x_j=0$. We are left with, for i=r+1,

$$\sum_{j=0}^r \sigma_{n_0-1+j} x_j = 0.$$

This is (2) for $n = n_0 - 1$. We can continue down by induction to n = -r, yielding $\sigma_0 x_r = 0$. But $\sigma_0 = 1$, so $x_r = 0$.

For n = -r + 1, (2) says $\sigma_0 x_{r-1} + \sigma_1 x_r = 0$. $x_{r-1} = 0$.

In a similar way we get all the $x_i = 0$. Thus the relation $\sum_{i=0}^{r} h_i(x_i) = 0 \Rightarrow x_i = 0, 0 \le i \le r$. Thus we have proved:

THEOREM. Let A be a commutative ring, and \mathbb{U} the category of locally free sheaves on $P^r(A)$. Then the homomorphisms $h_i: K_1(A) \to K_1(\mathbb{U})$ induced by $(P^r, \alpha) \to (P \otimes_A \mathfrak{O}(n), \alpha \otimes 1)$ satisfy the relations

$$\sum_{i=0}^{r+1} (-1)^i \binom{r+1}{i} h_{i+n} = 0$$

for all n, and h_0, \dots, h_r set up an isomorphism $\bigoplus_{i=0}^r K_1(A) \cong K_1(V)$.

- 6. Further remarks. (1) The result for K_0 is proved in SGA 6, Exposé 6, with more general schemes in place of Spec A, but I do not know how to give the proof for K_1 , except with an affine base scheme.
- (2) $K_1(A)$, $K_0(V)$ and $K_1(V)$ are all $K_0(A)$ -modules, and the theorem can be stated in the form

$$K_0(\mathfrak{V}) \otimes_{K_0(A)} K_1(A) \cong K_1(\mathfrak{V}).$$

In this form it generalizes the result of [4] for the case of projective r-space over an algebraically closed field.

REFERENCES

- 1. H. Bass, Algebraic K-theory, Benjamin, New York, 1968.
- 2. A. Grothendieck, Élements de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. No. 8 (1961). MR 36 #177b.
- 3. SGA 6 (1966-67) Théorie globale des intersections et Théorème de Riemann-Roch, Inst. Hautes Études Sci.
- **4.** L. Roberts, K_1 of some Abelian categories, Trans. Amer. Math. Soc. 138 (1969), 377-382.

QUEENS UNIVERSITY, KINGSTON, ONTARIO, CANADA