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Abstract. A module A is shown to be absolutely pure if and

only if every finite consistent system of linear equations over A has

a solution in A. Noetherian, semihereditary, regular and Prüfer

rings are characterized according to properties of absolutely pure

modules over these rings. For example, R is Noetherian if and only

if every absolutely pure i?-module is injective and semihereditary if

and only if the class of absolutely pure i?-modules is closed under

homomorphic images. If R is a Prüfer domain, then the absolutely

pure i?-modules are the divisible modules and Ext\t(M, A)=0

whenever A is divisible and M is a countably generated torsion-

free .R-module.

Throughout R will denote an associative ring with identity and all

modules are unital. An £-module, without further qualification, will

always be a left P-module. Similarly, Noetherian and semihereditary

will mean left-Noetherian and left semihereditary, respectively. A

submodule A of the £-module B is said to be a pure submodule if for

all right £-modules M the induced map M ® rA—^M ® rB is monic.

An equivalent formulation of purity more useful for our purposes is

that the induced map Homje(Af, B)—*HomR(M, B/A) be surjective

for all finitelypresented £-modules M—M is finitely presented if it is

the quotient of a finitely generated free £-module by a finitely gen-

erated submodule. Maddox [4] has called a module absolutely pure

if it is pure in every module containing it as a submodule. As we shall

see, an equally appropriate appellation for such modules would be

finitely injective. Now if A is pure in B and if C is a submodule of B

containing A, then it is easy to see that A is pure in C. Therefore A is

absolutely pure if and only if A is pure in every injective module

containing A and hence if and only if A is pure in its injective en-

velope.

Proposition 1. An R-module A is absolutely pure if and only if

Extg(Af, A) =0for all finitely presented R-modules M.

Proof. Let £ be the injective envelope of A. We then have the

exact sequence
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e i
Horn« (M, E) -> Koms (M, E/A) -» Ext* (M, A) -» 0.

Obviously 6 is surjective if and only if Exts(Af, A) =0.

Corollary 1. If A is an absolutely pure R-module, then

Exts(R/I, A) = Ofor all finitely generated left ideals I of R.

We have been able to prove the converse of the preceding corollary

only under the further assumption that R is semihereditary (see

Theorem 4 below).

Corollary 2. An R-module A is absolutely pure if and only if for

every diagram

a
P')—+P

Iß
A

with P' finitely generated and P projective there exists a homomorphism

y.P—*A such that ya=ß.

Proof. Clearly we may assume that P' is a submodule of P and

that P is actually free. Since P' is finitely generated, there is then a

finitely generated free direct summand F of P such that P'ÇF.

Therefore finding the desired y is equivalent to extending B to F.

But from the exact sequence

Horn« (F,A)^> Horns (P',A)-^> Exts (F/P', A}-*0

that is equivalent to ExtlR(F/P', A) =0.

We can now give an interesting interpretation of the above

characterizations in terms of linear equations. Consider the following

finite system of linear equations over the .R-module A

n

J2 rtjX) = ai       (ru G R; a¿ G A; i = 1, ■ • • ,m).

Intuitively, this system is consistent if one can multiply the equations

by arbitrary elements of R and add the resulting equations together

without obtaining an invalid relation among the a/s. This can how-

ever be formulated more rigorously. View the x/s as free generators

of a free .R-module F and, for each i, let mi=YL"=iriPci^F- Then the

consistency of our system of equations reduces to the correspondence

m¿—>a< inducing a homomorphism <f>:M—>A when M is the sub-

module of F generated by the m/s. On the other hand, it is clear that
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solving our system of equations is then equivalent to finding a

homomorphism \f/:F—*A that extends <p. For a fuller discussion

see [2].

Theorem 1. An R-module A is absolutely pure if and only if every

consistent finite system of linear equations over A has a solution in A.

The reader is reminded that one characterization (see [3]) of

injective modules is that every consistent system of linear equations

(with no cardinality restriction on the number of equations or un-

knowns) be solvable. Theorem 1 is thus one justification for calling

absolutely pure modules finitely injective. Another is the fact that

absolutely pure modules play precisely the same role relative to

semihereditary rings that injectives play relative to hereditary rings.

Indeed we have the following self-dual improvement of the familiar

Proposition 6.2 in Chapter I of [l ].

Theorem 2. For a ring R the following conditions are equivalent:

(a) P is semihereditary.

(b) Each finitely generated submodule of a projective R-module is

projective.

(c) The homomorphic image of an absolutely pure R-module is

absolutely pure.

Proof. The equivalence of (a) and (b) is established in [l]. Con-

sider a diagram

P <-c P'........

ß y

where P is projective, P' is finitely generated and Q is absolutely

pure. Assume (b) ,then P' is projective and there is a homomorphism

y'.P'—*Q such that ßy=f. Since Q is absolutely pure, there is a

homomorphism 5:P—»Q such that ha=y. But then (ßo)a=f and Q'

is absolutely pure by Corollary 2. Conversely, assume (c) and now

take Q to be injective. Then Q' is absolutely pure and we have

y:P—>£)' such that ya=f. Since P is projective, there is a homomor-

phism o:P—>Q such that/35=7. Then /3(5a) =/and P' is projective by

Proposition 5.1 in Chapter I of [l ].

A portion of our next proposition is also proved in [4J.

Proposition 2. Let \Ai, <£,/} be a direct system of R-modules where

each Ai is absolutely pure. If either (1) P is semihereditary or (2) each

4>ij is a monomorphism, then A = inj lim A ,• is absolutely pure.
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Proof. For each i, let</>,:^4¿—*A be the canonical map and consider

a homomorphism/:P'—>^4 where P' is a finitely generated submodule

of the projective £-module P. Since P' is finitely generated, /(P')

CI <t>i(Ai) for some i. Now if each <£,-,• is monic, then so is each $,-. Thus

under either condition (1) or (2), <f>i(Ai) is absolutely pure and there

is a homomorphism g :P—x£i(ylt) Ç A extending/.

Proposition 2 has several consequences : (i) an arbitrary direct sum

of absolutely pure £-modules is absolutely pure; (ii) the union of a

direct family of absolutely pure submodules is an absolutely pure

submodule and consequently (iii) every £-module contains a maxi-

mal absolutely pure submodule. By Theorem 2 and Proposition 2 it is

then clear that for modules over a semihereditary ring the sum of an

arbitrary family of absolutely pure submodules is absolutely pure.

Thus if R is semihereditary, then every £-module contains a unique

maximal absolutely pure submodule. It is well known that a ring R

is Noetherian if and only if an arbitrary direct sum of injective R-

modules is injective. Thus if R is not Noetherian, we can form a

direct sum of injective £-modules which is not injective but which is

necessarily absolutely pure. This observation and Corollary 1 to-

gether yield

Theorem 3. A ring R is Noetherian if and only if every absolutely

pure R-module is injective.

We next prove a restricted converse of Corollary 1.

Theorem 4. If R is semihereditary, then an R-module A is ab-

solutely pure if and only if Ext\{R/I, A) =0 for all finitely generated

left ideals I of R.

Proof. Assume that ExtR{R/I, A) =0 for all finitely generated 7.

Consider an arbitary homomorphism/:M—*A where M is a finitely

generated submodule of a finitely generated free i?-module F. The

proof is by induction on the number of generators of F. If F¿¿0, we

can write F = Rx @V where V is free with fewer generators than F.

Let 7= {r££:rx£il7+F}. Then there is an obvious isomorphism

I~MIMC\ V. Therefore 7 is finitely generated and, since R is

semihereditary, projective. Thus Mi\ F is a direct summand of M

and consequently finitely generated. By induction, there is a homo-

morphism £: V—*A such that £ | MC\ V=f\ MC\ V and hence a unique

homomorphism d'.M+V—^A extending both/and £. Define <j>: I—*A

by <l>(r) =d(rx) for all r££. Since Exts(£/7, ^4) =0, there is a homo-

morphism \f/ : R—>A that extends <j>. The mapping g : F—*A defined by

g(v+rx) =Î(v)+yf/(r) for all p£F and r£P is a homomorphism ex-

tending/.
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Remark. As we only used the hypothesis that R was semiheredi-

tary to show that MC\ V was finitely generated, our proof of Theorem

4 applies to the more general class of coherent rings.

Regular rings (in the sense of von Neumann) also admit a charac-

terization in terms of absolutely pure modules.

Theorem 5. A ring R is regular if and only if every R-module is

absolutely pure.

Proof. Let R be a regular ring. Then every finitely generated left

ideal J of R is of the form Re with e idempotent and is consequently a

direct summand of R. Thus both I and R/I are projective .R-modules.

Therefore R is semihereditary and ExtB(i?/7, A) =0 for all R-modules

A and all finitely generated left ideals /.

Conversely, assume that all i?-modules are absolutely pure and let

I be a finitely generated left ideal of R. Then / is absolutely pure as

an .R-module and consequently Extß(i?/7, J)=0. Therefore / is a

direct summand of R and hence I = Re for some idempotent e; that is,

R is regular.

Combining Theorems 3 and 5, we have the familiar fact that every

.R-module is injective if and only if R is semisimple (in the classical

sense).

If A is an absolutely pure .R-module it is easy to see that A is

divisible, that is, rA =A for all nonzero-divisors r£R- Indeed, for any

nonzero-divisor rG-R and x(EA, consider the homomorphism y.Rr

—>A mapping r to x. Since A is absolutely pure, there is an extension

}p:R-^A.Thenx=r^(i)ErA.

Theorem 6. Let R be a commutative integral domain. Then R is a

Prüfer ring if and only if every divisible R-module is absolutely pure.

Proof. Let R be a Prüfer ring, that is, R is a semihereditary

commutative integral domain. By [l, Chapter VII, Proposition 3.4],

Ext«(R/7, A) = 0 whenever I is finitely generated and A is divisible,

that is, every divisible -R-module is absolutely pure by Theorem 4.

Conversely, if every divisible pure .R-module is absolutely pure, then

R is semihereditary by Theorem 2.

For Prüfer domains we have two further interesting theorems.

Theorem 7. Let Rbe a Prüfer ring. If A is a divisible R-module and

Mis a countably generated torsion-free R-module, then ExtB(Af, A) =0.

Proof. Let i be a submodule of K with K/A—M. Since M is

countably generated, K is the union of an ascending sequence of

submodules K0 =AÇR"iÇ • ■ ■ Ç.K„Ç. ■ ■ ■ with Kn/A finitely gen-

erated. But finitely generated torsion-free modules over a Prüfer ring
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are necessarily projective by [l, Chapter VII, Proposition 4.1] and

are therefore finitely presented. Thus each Kn/A is finitely presented

and consequently Kn+i/Kn is finitely presented for each n. To show

that A is a direct summand of K it suffices to construct a sequence of

homomorphisms <¡f>„ : Kn-^>A such that<£o = l¿ and </>n+i| £„=<£„ for all

n. That such a construction can be accomplished inductively follows

immediately from the observation that Extfi(£n+i/£», A) =0 for all

n.

That the countability hypothesis in Theorem 7 cannot be removed

is a consequence of remarks following Theorem 1.2 in [5].

Theorem 8. Let R be a Prüfer domain with quotient field Q. If

every R-submodule of Q is countably generated, then Extß(il7, .¡4)=0

whenever M is torsion-free and A is divisible.

Proof. Since M is torsion-free, it is not difficult to see that M is the

union of a well-ordered family {il7a}a<x of submodules such that

(1) Mac: Mß ior<x<ß, (2)Ma=\Jfi<aMß if a is a limit ordinal and (3)

Ma+i/Ma is isomorphic to an £-submodule of Q for all a. But then our

hypothesis on Q and Theorem 7 yield KxtB(Ma+i/Ma, A) =0. The

proof is then completed by a transfinite induction similar to the

finite induction in the proof of Theorem 7. Note that condition (2)

insures that no difficulties arise at limit ordinals.

Corollary 3. Let R and Q be as in Theorem 8. Then hdRM^i for

every torsion free R-module M and gl. dim. R g 2.

Proof. Let D be an injective envelope of the £-module N. Then

Ext«(M, N)^ExtR(M, D/N) =0 if Mis torsion-free. Now let M and

N be arbitrary £-modules and consider a short exact sequence

£>->£-*M with F free. Then ExtB(M, A0^Extß(£, N) =0 since K is

torsion-free.
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