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QUATERNIONS AND BINARY QUADRATIC FORMS

BART RICE

Abstract. Methods are discussed for studying binary quad-

ratic forms by use of quaternions derived from the ternary quad-

ratic form f=x'—yz. In particular, Gauss composition of binary

quadratic forms may be achieved by factoring and multiplying

quaternions in a natural way.

1. Introduction. In this paper we show how quaternions obtained

from a certain ternary quadratic form / may be employed in the

study of binary quadratic forms. We use the (ormf = x2—yz because

<Z = 4(det /) = — 1, whence all binary quadratic forms are open to

scrutiny. The same methods may be applied using other ternary

forms/, only the condition | d\ > 1 precludes application of the meth-

ods to binary quadratic forms of certain discriminants. The tech-

niques of this article borrow from a procedure introduced by Gordon

Pall in [5] which uses quaternions in the familiar Lipschitz ring of

integral quaternions to study the representations of a positive integer

as a sum of three squares. I wish to thank Professor Pall, my teacher,

for his suggestions concerning this material.

2. Preliminaries. An integral ternary quadratic form/= ¿~^i,}- a^XiXj

(the sum is taken from 1 to 3, as will be the case with all sums hence-

forth) gives rise to a quaternion algebra 9t = 9Î(/) = Q[l, ii, i2, ¿3]

iQ = rational numbers) and an integral order R = Rif) = Z[l,ji,j2,jî]

contained in 9Î. The basal elements ii, i2, is have the multiplication

table given by Pall in [6] ; to wit,

%r   — Arr, T  —   1, ¿, 6;

i4$ = — AT, + ¿_, aktih',        isir = — A,r — ¿_, aktik;
k k

where (Ay) =adj (a¿j), and (r, s, t) is a cyclic permutation of (1, 2, 3).

Also, j* = 4 +1«*, k=l, 2, 3, where £i, e2, e3 are chosen 0 or 1 accord-

ing as 2a2i, 2ai3, 2ai2 are even or odd, respectively. An element

a =¿^ XkiicEffi such that xx, x2, xzEZ, is said to be "purely integral";

"purely primitive" if, in addition, (*i, x2, x¡) = 1. In the casef = x2—yz,
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j\ = ii + h, J2=Í2, jz=iz, and adj /= —\ix2 — iyz). Thus the "Brandt

norm-form" of R (cf. [ó]) is given by

F = ix0 + hlZ xictk)   + adj/ = x0 + x0xi + x2x3,

which is the "norm" Na of a = x0+ ¿Z #*/*■ Fls indefinite and funda-

mental, and thus, since d= — 1 (cf. [ó],Theorem 3 and the remark on

p. 293), given an integer m and a quaternion aER such that m\ Na,

there is a unique (up to left unit factors) element ßER of norm m

such that ß is a right divisor of a. The multiplication in R is as fol-

lows: If a = u0+ ¿Z ukjk, ß = Vo+ zZ vkjk, then

Otß  = UoVo — U2V3 +  iu0Vl + «1»1 + Mll'o + «2^3  — U3V2)jl

+  (M0t>2 + «2Í>0 + U2Vl)j2 +  iUoVi + U3V0 + UlV3)j3.

3. Purely primitive sets. Let v—zZ xkik be a purely integral qua-

ternion. Define [r¡]= {6rfi:N6=\, 0£i?}. Notice that mEM implies

Np = Nr\, and if rj is purely primitive, so is p. Thus we will call [tj]

"purely primitive of norm q" if 77 is purely primitive and Nr\=q.

Leti/'= [a, b, c] be a primitive binary quadratic form of discriminant

d = b2 — 4ac= —n. We now define a process by which tp carries each

purely primitive [r¡] of norm w/4 (5^0) into a unique purely primitive

[f ] of the same norm.

A (6/2+77) = \ib2-\-n) =ac, so 6/2+?7E2?. Hence we may write

b/2-\-rj=<TT, where N<r = c, Nr = a, and cr, rER- Let ^ = rt}f/a=T<x

— 6/2. It follows easily that £" is purely integral. Also, f is purely prim-

itive; for if f =¿Z ykik and ^|yt, £ = 1, 2, 3, then ¿>|ö since arj = ffr and

(*i, 3C2, *g) = l. Also, ¿>|«, since y\ — 4^273 = —»• Because b2-\-n = Aac,

p\b. Since aÇâ = cr\ and 17 is primitive, p| c. This contradicts the prim-

itivity of \p- Also, if t is replaced by 6r, N6 = 1, J is replaced by 6Ç6.

If t\ is replaced by 6r¡6, N6 = l, then f is unchanged, since b/2-\-6r¡d

=d<TTd, il/NÍTd))Tdievd)6f= il/Nt)tVt = f.

(3.1) Lemma. TAe process associated with the primitive form

\fs= [a, 6, c] ¿s i/ze iame as that for the following forms equivalent to \p:

[a, b + 2ah, c-\-bh-\-ah2], [c, —6, a].

Proof. See Lemma 14 of [5].    Q.E.D.

(3.2) Corollary. Any two equivalent forms \p determine the same

process.

Proof. (_?J) and matrices of the type (¿Î) generate SL2iZ).

Q.E.D.
Thus we may speak of a class C of primitive forms taking [77 ] to
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(3.3) Lemma. If [,]£♦&■]. [f]4[€], then [tJSftftJ.

The proof involves united forms (i.e., concordant forms in the

Dedekind sense, see [3, p. 69]). The reader is referred to [5, p. 496].

(3.4) Lemma. There is at most one primitive class of discriminant — n

carrying any given purely primitive [r¡ ] of norm n/i into a given purely

primitive [f ] of the same norm.

Proof. Suppose C, D take [t]] into [f]. Then both CD-1 and the

principal class P carry [t]] into [17]. Suppose m is primitively repre-

sented by CD-1. Then m can be made the first coefficient of a form

yp= [m, b, c]ECD~1. \¡/ takes [17] into [tj], so there is an integral

quaternion tER satisfying Nr = m and Tnf = mr¡. From this follows

T7]=r¡T, an expansion of which yields x¿íy = xyí¿, i, j = l, 2, 3, where

t\=y£jkXkik, T = t0+^/ktkjk. Since (xi, x2, x3) = l, we can find an

integer g such that tk = gxk, k = 1, 2, 3. Thus m = Nt = tl+Xitog-\-x2x3g2.

Clearly [l, xi, x2x3]EE, and thus E represents every integer repre-

sented primitively by P= CD~1. Since E is ambiguous (cf. [3, p. 64]),

E = F,C = D.    Q.E.D.

4. The process and composition. We now turn to the equation

TdT=ß, where tER and ct= 5^ akik and ß= X]* bkik are purely inte-

gral. By direct computation,

2
bi = 2tit2a3 — 2t0t3a2 + ¿o^i + Wi#i + 2t0t2a3 — t2t3ai\

2 2
(4.1)        b2 = a2to + aJoh + 03/2;

*« = a2(-h)2 + ai(-h)(t0 + ti) + a3(t0 + h)2.

Thus, for T = t0+ zZ* tkjk, the equations (4.1) imply that if

Ho      -h "
T = T(t) =

then det T = Nr and T'AT = B, where A, B are respectively the

matrices of the forms 0(a) = [a2, ai, a3], <j>(ß) = [b2, bi, b3]. Conversely,

if

satisfies S'^4S = P, then cr=a(S) =Si+(si — si)ji-{-s3j2— s2j3 satisfies

aaä = ß. Thus, in particular, a set [t]] "corresponds" to a class C(r¡)

in the sense that f £ [in] if and only if <p(t)~4>(r))EC(r¡). Moreover,

if yp= [a, b, c] is primitive of discriminant — n, then a(\p)=bii+ai¡
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+c¿3 is purely primitive of norm w/4. Also, ai<pir¡)) =r¡, 0(a(y^)) =\p,

aiTir))=r.   '

Let a(Q denote a representative of [«WO], where 4*EC. As before,

let E denote the principal class of discriminant — n= —4At;, where

V=¿^,kXkik is purely primitive. Then r¡' =Xiii+i2-{-x2x3i3E [«(£)],

since surely [l, Xi, x2x3]EE. By direct computation, Xi/2 +ij' = or,

where o- = Xiji +j2+^373 iNa = x3), and t = x2 + (1 — x2)ji ÍNt = x2), and

Tr¡'f = x2t]. Hence C(?j) takes [«(E)] into [r/].

(4.2) Theorem. There is a one-to-one correspondence between purely

primitive sets [r¡ ] of norm w/4 and classes of primitive binary quadratic

forms of discriminant —n. Also, given any two such purely primitive

sets, [tj] and [f ], there is a unique class C taking [r¡] into [f ]. If B, C, D

are primitive classes of discriminant —n, then BC = D if and only if

[aiB)]^[aiD)].

Proof. The first statement has already been established as fact.

From the preceding, [a(E)]-£«U[ri], [a(E)]-^[f]. Thus,

Cfa)-'C(f)
M->[rj.

Uniqueness has already been established. Suppose that [rj ]-£>[£"]. The

commutativity of the diagram

M - fr]
civ)\ /-coo

HE)]

yields the validity of the last sentence in the theorem.    Q.E.D.

Thus composition of primitive binary quadratic forms may be

achieved simply by multiplying quaternions! The correspondence

between this method and composition by united forms may be

gleaned from the formulae

b/2 + bii + aii2 + a2ci3 = (ft/i + aij2 + cj3)ia2 + (1 — a2)ji) ;

(a2 + (1 — a2)ji)ibji + aij2 + cj3) = b/2 + bii + aia2i2 + ci3.

For the connection between this "quaternionic composition" and

composition by bilinear substitution, we turn to Gauss. Specifically,

we answer the question, "Given a quaternionic composition BC = D

determined by [aiB)]L->[aiD)],f'EC, is therein evidence a Gaussian

bilinear substitution which yields F=ff',fEB, FED?" . . . And the
converse question as well.
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Thus suppose that /= [a, b, c]EB, f'=[a', V, c']EC. Suppose

further that b'/2+a>if) =crr, Nr = a', Na = c', t = t0+¿Zk kjk,

<r = u0+z2kukjk, f = (l/a')ra(/)f =ra — b'/2, and <pi^) = F. Then

F=ff. That is, Eis a composite of/,/' in the Gauss sense. The reader

is invited to verify that the appropriate bilinear substitution is given

by Tio-, t), where

Tia, r) =
t0 + ¿i    «o    h     —u3

. —12 u2    to    Ua ~\- uiA

Use of this matrix is prompted by the equations f^r = a'aif), aÇâ

= c'aif), and the famous equations [l]-[°] of article 235 of Gauss'

Disquisitiones arithmeticae [4].

Conversely, suppose F=ff via the bilinear substitution

_ YP    P'    P"    P'"l

"lq    q'     q"     q'"\'-o    1

and that all three forms are primitive of discriminant d. Butts and

Estes in [l] pointed out that pq"-qp" = a', p'q'"-q'p'" = c'. And,

in fact, if we choose er, t by T= r(tr, t) (i.e., t0 = q", Uo = p', h = p — q",

Ui = q'"-p', etc.), then Ncr = c', Nr = a', b'/2+o¿if) =ar, and ra(/)f

= a'aiF).

We remark in passing that, evidently, quaternionic and Gaussian

composition coincide over every domain which admits composition in

the Gauss sense. The following lemma allows us to identify quaternion

and Gaussian composition even in the case when discriminants are

not equal.

(4.3) Lemma. Let p be a prime, n = 0 or —1 (mod 4). Every purely

primitive f of norm p2n/4 is of the form Ç = ttit, where Nr=p and

Nrj = w/4. Further, r and rj are unique apart from insertion of unit

factors. Thus every purely primitive [f ] of norm p2n/4 is derivable from a

unique purely primitive [r¡] of norm w/4.

Proof. Suppose p is odd. Choose j = 0 or 1 such that pj/2-f-f is in

R. Then Nipj/2+Ç) =p2(j+n)/<í. Hence pj/2+Ç = gt, where Nt = p,

a primitive (mod p). If crr = pv, with p, vER and Np = p, then ¡Ktt = 0

(mod p). Since r is necessarily primitive, ßcr = 0 (mod p). Therefore,

<t and <tt have the same left divisors of norm p. But <tt=Pj/2+Ç

= f(rj — a). Thus o- = fr¡', Pj/2-\-Ç = tt]'t, f = fiv'— j/2)r = fr¡T. The

factorization is necessarily unique (cf. [ó]). If p — 2 the above applies

with/ chosen 0 or 1 according as n = 0 or —1 (mod 4).    Q.E.D.
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5. Other applications. The techniques developed in this paper may

be applied to the study of the quadratic orders

Rd « {x0 + Xioid'.xo, xi £ Z\,

where

(5.1)   aid = (e + \/d)/2,     e = 0 or 1 according as d = 0 or 1  (mod 4).

We illustrate by using these methods to derive some results obtained

by Butts and Pall in [2].

We can, in view of (4.3), map a given primitive class C of binary

quadratic forms of discriminant dv2 onto a unique primitive class D of

discriminant d; simply take D = C(r\), where a(C)=Tnf, Nr=v>0.

An easy argument shows that this factorization is essentially unique.

According to Theorem 2.5 in [2], this corresponds to the function

C->CId.
Now suppose that d'—dv2 (v>0), and that A', A are invertible

fractional ideals in Rd', Rd respectively. To study the equation A

= A'Rd, we may assume A = [m, r+w], A' = k[m', r'+&>'], k rational,

m, m', r, r'EZ, m\ N(r-\-u>), m'\ N(r'-\-u'), where co = w<¡, co' =cod> as in

(5.1). Associated with the invertible fractional ideals A, A' are the

primitive forms

¥(A) = [m, 2r + e, N(r + u)/m],     y(A') = [m', 2/ + e', N(r' + w')/m'\

of discriminants d and dv2 respectively. Hence we may associate with

A, A' purely primitive sets [77], [17'], where77 = a("¿7(^4)), 77'= «OÍ7(,4')),

of norms — d/i, —dv2/ê respectively. According to Theorem (5.1) of

[2], A =A'Rd implies the existence of a matrix

l"e    n
H = I ,        eni = v,

LO    wJ

such that k(m', r'+a>') = (m, r+u)H. It follows that ^r(A)H=iSf(A'),

and thus Tr¡f=r¡', where T = e-\-(ni — e)ji — hj3 has norm eni = v. Con-

versely, if A is an invertible ideal in Rd, and A' is an invertible ideal

in Rd- obtained fromT?7i =77', Nr=v, then.d'P<¡ = vl.

Now let p he a prime. Then there are p + 1 ideals (t] of norm

Nt = P in P (refer to [6]). Those for which tt7? = 0 (mod p), Na = n/4,

are precisely the right divisors of Xo/2+77, where (xq + w)/4 = 0

(mod p), and thus are l + ( — n/p) in number. Also, if r and r' are not

left associates, then 1-77? and t'tjt' are not in the same purely primitive

set [f ], from the uniqueness feature of (4.3). Thus a given purely
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primitive [77] of norm ra/4 gives rise to ip + 1) — (l + ( — n/p)) =p

— i — n/p) purely primitive sets [f ] of norm p2n/4. We obtain easily,

then, that the number N of purely primitive sets [f ] of norm nv2/4,

v>0, obtainable from a given purely primitive set [77] of norm ra/4 is

given by

(5.2) N=fip7~\pi-i-n/Pi)),
<~i

where v = p1 • • ■ p'/ is a factorization of v into distinct primes. Hence

we deduce Theorem 5.2 and Corollary 5.3.1 of [2], namely:

(5.3) Theorem. Suppose A is an invertible fractional ideal in Rd,

where d= —n, and d' = dv2, v>0. Let v = pei ■ • ■ pT' be a factorization of

v into distinct primes. Then the number of invertible fractional ideals A '

in Rd' such that A'Rd = A is given by (5.2).
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