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POLYNOMIAL IDENTITY ALGEBRAS WITH INVOLUTION

SUSAN MONTGOMERY

Abstract. It has been shown by W. Baxter and W. S. Martin-

dale that if R is an algebra with involution over a field F of char-

acteristic not 2, and the symmetric elements of R are algebraic and

satisfy a polynomial identity, then R is locally finite. This paper

extends their result to an arbitrary field, giving a new proof which

is independent of the characteristic of F.

There are a number of results in the literature considering problems

of the following sort: Given a ring with an involution such that the

symmetric elements of the ring satisfy a certain property, under what

conditions is the entire ring forced to satisfy the same property? One

of the most striking such results is the theorem finally proved in its

full generality by S. A. Amitsur [l]: If the symmetric elements of a

ring with involution satisfy a polynomial identity, then the entire

ring satisfies a polynomial identity. The result with which we are

most concerned is a theorem of W. Baxter and W. S. Martindale [2]

stating that if R is an algebra over a field F such that 2EF, and the

symmetric elements of R are algebraic and satisfy a polynomial

identity, then R is locally finite. The purpose of this paper is to ex-

tend Baxter and Martindale's theorem to an arbitrary field F, giving

a proof which is independent of the characteristic of F.

It should be pointed out that it is impossible simply to generalize

Baxter and Martindale's proof. For, when %EF, every element of R

may be written as a sum of a symmetric and a skew element, and

thus every element is a sum of algebraic elements. By a theorem of

Procesi [4], A will then be locally finite if R satisfies a polynomial

identity. Since this method will not work when F has characteristic 2,

completely different methods are needed.

Notice that this result generalizes a theorem of Kaplansky stating

that an algebraic algebra satisfying a polynomial identity is locally

finite [3, p. 167].
We will denote the involution on R by *; so * is an antiautomor-

phism of period 2. The symmetric elements of R, denoted by S,

consist of all r£A such that r*=r. R satisfies a polynomial identity
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(P.I.) of degree d over F if there is a nonzero element/(/i, • ■ • , t„) of

degree d in the free algebra over F generated by the ti such that

(n. • • • i rn) =0, for all n, • • • , rnER-

The following lemma is perhaps well known, but does not seem to

appear in the literature.

Lemma. If R is a ring with a right quotient ring Q and R has an in-

volution *, then * can be extended to an involution of Q.

Proof.1 First, * can be considered, in particular, as an isomorphism

*:R—>R° where R° is the ring anti-isomorphic to R. Therefore, R and

R° have both left and right quotient rings; it is clear, in fact, that Gj°

is the left and right quotient ring of R°. Now by the universal pro-

perty of quotient rings, the diagram

*

I        I
Q    Q°

can be completed uniquely to a map Q^>Q°. This is an isomorphism

and  *'.Q—^Q is an automorphism extending   1:R-^>R.  Therefore,

again by universality, * = 1 on Q, and the lemma is proved.

We are now in a position to prove the main

Theorem. If Ris a P.I. algebra over any field F, R has an involution *

and S is algebraic over F, then R is algebraic over F. In addition, R is

locally finite.

Proof. We first show that without loss of generality, we may as-

sume R is a prime ring. For, if R is not algebraic, there is some x£i?

which is not algebraic. Let

A = [pix), nonzero polynomials in x with coefficients in F],

Note that 0(£A since x is not algebraic, and that A is multiplicatively

closed.

Let 7 be an ideal maximal with respect to excluding A ; it is easy to

see that 7 is a prime ideal. Thus, R/I = R is a prime ring. Now x, the

image of x, is not algebraic in R because of the definition of 7. Con-

sider the case when 7*$7. Then 7+7*$7, so (I+I*)r\A t*0 by the

maximality of 7. Let p(x)E(I+I*)r\A. Since pix)EI+I*, p(x)

= a+è, where aEI, i>£7*. Now è£7* implies that b*EI, and so

b-\-b* = pix) + ib* — a)=pix) (mod 7). Since b+b* is algebraic, pix) is

1 The proof of this lemma is the referee's. The author's own proof was much longer.
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algebraic in R. But then x is algebraic, a contradiction. Thus, it must

happen that I* = I.

In this case, R has an induced involution (if ä is the image of aER,

as ä* is given by a*). R satisfies the same P.I. as P, as it is a homo-

morphic image of P, and, in addition, every symmetric element of R

is algebraic. For, say ä = ä*. Then

ä2 = da* = aa*,

so d2 is the image of a symmetric element of P, and so is algebraic.

But then ä itself is algebraic. Summarizing, R is a prime P.I. ring

with * such that the symmetric elements are algebraic. If R were

algebraic, we would have a contradiction, since x is not algebraic.

Thus, we may assume that R is prime.

By a theorem of Posner [3, p. 184], a prime ring satisfying a P.I.

has a right quotient ring Dm, the mXm matrices over a division ring

D, where D is finite dimensional over its center Z. Thus, to show that

R is algebraic over F, it will be enough to show that Z is algebraic

over P.

As a first step, extend the involution on P to an involution on Dm;

this is possible by the lemma. Then to show that Z is algebraic, it will

suffice to show that the symmetric elements of Z are algebraic. For,

given zEZ, z-\-z* and z*z are symmetric. If these elements are

algebraic, so is 2, since 2 satisfies the polynomial x2 — (z-\-z*)x-\-z*z = 0.

Let 2 be any element of Z with 2* = 2. We may write 2 = ab~x, some

a, bER, so zbb* = ab*. Since zEZ, (ab*)* = (zbb*)* = bb*z = zbb* =ab*.

That is, ab* is symmetric. But then ab* is algebraic; also (bb*)~l is

algebraic, since bb* is symmetric and thus algebraic. This means that

z = (ab*)(bb*)~1, a product of algebraic elements of Dm. Since zEZ,

ab* and (bb*)-1 commute, and thus 2 itself is algebraic.

To see that R is also locally finite, apply the theorem of Kaplansky

[3, p. 167] stated in the introduction.

Corollary 1. If Ris an algebra with * over F such that S is algebraic

and satisfies a P.I., then R is algebraic, P.I., and locally finite.

Proof. By the theorem of Amitsur mentioned previously [l], 2?

satisfies a P.I. since 5 does. We may now use the theorem proved

above.

Corollary 2. If Ris an algebra with * over F such that S is algebraic

of bounded degree, then R is algebraic, P. I., and locally finite.

Proof. If 5 is algebraic of bounded degree, then 5 satisfies a P.I.

[3, p. 155], so the result follows from Corollary 1.
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