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ON THE PERTÜRBABILITY OF THE ASYMPTOTIC
MANIFOLD OF A PERTURBED SYSTEM OF

DIFFERENTIAL EQUATIONS

G. LADAS, V. LAKSHMIKANTHAM AND S. LEELA1

Abstract. We investigate the asymptotic relationship between

the solutions of a linear differential system and its perturbed sys-

tem. Our results depend upon a known result of F. Brauer on

asymptotic equilibrium. We also study the asymptotic manifold of

solutions of the nonlinear system generated by the solutions of the

corresponding linear system.

1. Recently, Brauer and Wong [2] and Onuchic [5] obtained

general results on the asymptotic relationship between the solutions

of a linear differential system and its perturbed system. Toroselidze

[ó] considered the problem of perturbing the asymptotic manifold

of a nonlinear scalar equation. Hallam and Heidel [3] extended the

results of Toroselidze to nonlinear systems and also discussed the

asymptotic relationships of solutions.

We, in the present paper, wish to investigate these problems fur-

ther. Our results depend upon a known basic result [l ] on asymptotic

equilibrium and consequently the proofs are short and fundamental.

Our approach has thrown considerable light on the problems and at

the same time improved the results of [2] and [3 ] by weakening the

hypotheses. This is explained in detail in a remark at the end of the

paper.

2. Let J denote the half-line 0^i< 00 and R", the euclidean «-

space. Let |[-|| denote any convenient norm of a vector and the

corresponding norm of a matrix. We consider the nonlinear differ-

ential system

(2.1) x' = Ait)x+fit, x),    x(/„) = xo,       to E J,

where Ait) is a continuous «X« matrix for tEJ a.ndfEC[JXRn, Rn].

Received by the editors April 19, 1970.

AM S 1969 subject classifications. Primary 3440, 3442,3450, 3453.
Key words and phrases. Ordinary differential equations, asymptotic manifold,

equilibrium, asymptotically equivalent, generalized asymptotically equivalent,

perturbed systems.

1 The author was supported in part by SUNY Research Foundation under grant

0697-01-25-1969.

Copyright © 1971, American Mathematical Society

65



66 G. LADAS, V. LAKSHMIKANTHAM AND S. LÉELA [January

Suppose that YQ,, t0) is the fundamental matrix solution' of the cor-

responding linear system

(2.2) y' = Ait)y,       y(t0)=ye,

such that YQo, t0) = I (unit matrix). Then, the transformation

(2.3) x = Y(t, t0)z

reduces (2.1) to the system

(2.4) z' = F-»(i, t0)f(t, T(t, to)z) = Fit, z),        z(t0) = x0,

which plays an important role in our discussion below.

A known result of F. Brauer [l] will now be stated in a modified

form whose proof requires no significant changes.

Theorem 0. Assume that

(i) FEC[JXR",R*]and\\Fit,z)\\^git,\\z\\),it,z)EJXRn;
(ii) gEC[JXR+, R+] and git, u) is monotone nondecreasing in u

for each tEJ',
(iii) for a given u0>0, the maximal solution rit) =rit, to, «o) of the

scalar differential equation

(2.5) u' = git, u),        «(/„) = Mo,

is bounded on [to, °°).

Then, the differential system (2.4) has asymptotic equilibrium in the

set A = [xGAn:||x|| gwo].

This theorem and the techniques of its proof will be used fre-

quently in the sequel.

Let us now introduce the following definitions. For that purpose,

assume that A(¿) is a continuous nXn matrix for tEJ, satisfying the

estimate

(2.6) \\Mt)Yit,to)\\úait),        t^lo,

where ail) is a continuous positive function for tEJ-

Definition 1. The differential systems (2.1) and (2.2) are said

to be generalized asymptotically equivalent in a set A ERn, if

(i) given any (/0, x0)EJXA, there exists a cER" such that every

solution x(i, t0, Xo) of (2.1) satisfies the order relation

(2.7) ||A(0[*(/, to, xo) - Y it, h)c}\\ = o(a(t)),        t -» co ;

(ii) given any solution yit) = F(¿, t0)c of (2.2) with cEA, there

exists a solution xQ, t0, x0) of (2.1) on [t0, °o) such that (2.7) holds.

Definition 2. The differential systems (2.1) and (2.2) are said to

be generalized eventually asymptotically equivalent, if given any
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Xo£P", there exists a P0=Po(x0)>0 and a cERn such that every

solution x(t, to, Xo), io=Po, of (2.1) satisfies (2.7) and conversely,

given any cERn, there exists a P0 = Po(c) > 0 and a solution x(t, to, x0),

to^To, of (2.1) satisfying (2.7).

Notice that whenever A(t) = F-1(/, /0) and a(t) = 1, the order rela-

tion (2.7) takes the form

(2.8) \\z(t, to, xo) - c\\ = o(l),       <-*«,

where z(t, t0, xo) is a solution of (2.4). The foregoing definitions are

then reduced to the corresponding asymptotic equivalence notions

with respect to the systems (2.4) and £' = 0, or equivalently to the

concepts of asymptotic equilibrium of the system (2.4).

Definition 3. Given A(t), a(t), the set 5(A, a) consisting of all

solutions x(t, to, xo), (to, x0)EJXRn, that verify the order relation

(2.7) for some cERn, is called the asymptotic manifold of (2.1)

generated by (2.2).

We are also interested in the submanifold 5o(A, a) defined by

5o(A, a) = [x(t, to, xo) £ S(A, a): Y~\t, t0)x(t, t0, x0)

is bounded on [to, °°)}.

Definition 4. A subset S of 5(A, a) is said to be perturbable if

given any solution x0(t, t0, x0) of (2.1) in S there exists a 5>0 such

that every solution xi(t, t0, xi) of (2.1) satisfying ||xo — Xi|| <5, be-

longs to S.

3. The following two results deal with the asymptotic relationship

between the systems (2.1) and (2.2).

Theorem 1. Assume that

(i) the estimate (2.6) holds;

(ii) for (t, x)EJXRn,

(2.9) || r-*(¿,ío)/0,x)ll ^¿ (í,

where g £ C[JXR+, R+] and g(t, u) is nondecreasing in ufor each í£ J;

(iii) the hypothesis (iii) of Theorem 0 is verified. Then, the differen-

tial systems (2.1) and (2.2) are generalized asymptotically equivalent in

the set A = [x£P":||x|| ^w0].

Proof. In view of the relations (2.3), (2.4), (2.6), (2.9) and the

monotonie character of g(t, u) we obtain

(2.10) \\F(t, 2)|| = || Y-\t, lo)f(t, Y(t, to)z)\\ ^ g(t, \\z\\).
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Hence, the differential system (2.4) verifies all the assumptions of

Theorem 0 and consequently it has asymptotic equilibrium in the

set A. All that is necessary to complete the proof is to notice the

truth of the inequality

(2 id "A(/)^' h>Xo) " F(/'to)c^ - HA(/)Y(t>io)" l'z(/'/o'Xo) " 41

è ail)\\zit, l0, x0) - c\\,

which results using (2.3) and (2.6).

Theorem 2. Let the hypotheses (i) and (ii) of Theorem 1 hold. Sup-

pose further

(iii*) J°° gis, M)ds< «j , for each positive M.

Then

(a) the differential systems (2.1) and (2.2) are generalized eventually

asymptotically equivalent;

(b) any solution x(i, t0, xo), (¿o, Xo)EJXRn, of (2.1) such that

Y~lit, to)x(t, t0, xo) is bounded on [io, °°), is a member of S(A, a).

The proof of this theorem depends on the following lemma. It is

of interest in itself since it throws much light on the condition (iii*)

by exhibiting the same in terms of equivalent and more convenient

criteria.

Lemma. Assume that gEC[JXR+, R+] and git, u) is monotone non-

decreasing in ufor each tEJ- Then, the following are equivalent:

(A) given any Uo>0, there exists a To=Toiuo)>0 such that the

maximal solution rit, t0, Uo), ¿o=2"o, of (2.5) is bounded on [to,  °°);

(B) given any w°> 0, there is a solution uQ) of (2.5) existing on some

interval [h, «> ) such that linii-,«, m(/) = u°;

(C) f" gis, M)ds< <», for each positive M.

The proof of this lemma can be given along the lines of the proof

of the lemma in [3] and therefore we shall omit it.

Proof of Theorem 2. Since (iii*) implies (A) by lemma, the

generalized eventual asymptotic equivalence of the systems (2.1)

and (2.2) follows by adapting the proof of Theorem 0, together with

the observations that lead to the inequalities (2.10) and (2.11). This

proves (a).

To prove (b), let x(i, t0, -0) be a solution of (2.1) such that F_1(i, /<>)

•x(/, to, Xo) is bounded on [t0, oo). This implies, by (2.3) that, z(i, t0, xo)

is bounded on [to, °o ), where z(¿, to, x0) is a solution of (2.4). Suppose

that ||z(/, ¿o, xo)|| ^M, t¡tl0. Since (iii*) implies (A), by lemma, given

il7>0, there exists a To=T0iM)>0 such that the maximal solution

r(l, To, M) of (2.5) is bounded on  [^o,  »). At t = To, we have
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\\ziTo, t0, xo)\\^M = riTo, T0, M). Letting z*(i, T0, z(r0)) be any

solution of (2.4) through (70, z(7"0)), where z(70) =z(7'o, to, x0) and

denoting by mit) = [|z*(i, To, ziTo))\\, we obtain the differential

inequality

D+mit) g g(í, mit)),       t ^ To.

It then follows by a well-known result (Theorem 1.4.1 in [4]) that

||s*(/, To, ziT0))\\ ^ rit, To, M),        t à 7„.

Since z(i, /o, x0) is one of those solutions z*(i, To, ziT0)), the inequality

||«(/, to, Xo)\\ ^ rit, To, M),        t à To,

is also true. It is now easy to conclude that there exists a cER" such

that lim,-,«, z(í, í0, x0)=c, following the first part of the proof of

Theorem 0. This, in turn, shows that (2.7) holds, because of (2.11).

The proof is complete.

The theorem that follows gives sufficient conditions for the per-

turbability of the manifold 50(A, a).

Theorem 3. The assumptions of Theorem 2, together with the unique-

ness and continuous dependence on initial conditions of solutions of

(2.1), imply that 50(A, a) is perturbable.

Proof. Let x0(¿)=x(í, t0, x0) be the solution of (2.1) such that

Xoit)ESoiA, a). Then F_1(/, ¿0)xo(0 is bounded on [to, °°). In view

of (2.3), we deduce that ||z0(/)|| SM0, t^t0, for some J170>0, where

Zoit) —zit, to, Xo) is the solution of (2.4). Clearly, because of (2.11), it

is enough to show the existence of a 5>0 such that ||xo—Xi||<5

implies that any solution zi(2)=z(¿, /„, Xi) of (2.4) is bounded on

[io, °°) and that Yimt^xZiit) =c. Since, by lemma, (iii*) implies A,

given M = Mo +1, there exists aT0= TiM) > 0 such that the maximal

solution r(/)=r(i, T0, M) of (2.5) is bounded on [To, °o). As git, u)

2:0, rit) is nondecreasing and consequently limt^.Krit) exists. It

then follows that ||zo(i)|| <rQ), t^T0. Let e = è(il7-||z0(r0)||)>0 be

given. Then, by the assumed continuous dependence of solutions on

initial values, there exists a S>0 such that Ixo — xi||<5 implies

i|z1(r0)-z0(7o)||<€. Hence,wederive that ||zi(r0) I ̂ ||zo(r0)||+i^M.

Using the uniqueness of solutions and the corresponding argu-

ments as in the proof of Theorem 2, it is now easy to complete the

proof.

Theorem 4. If, in addition to the hypotheses of Theorem 3, we assume

that
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(2.12) II Y-\t, to)A-Kt)\\ Ú ß(t),        t è to,

where ß(t) is a continuous positive function for tEJ such that ct(t)ß(t)

^Lon J, then 5(A, a) is perturbable.

Proof. Since 50(A, a) is perturbable by Theorem 3, it suffices to

show that 5o(A, a) =5(A, a).

Let xo(i)£5(A, a), where x0(/) —x(t, t0, x0) is the solution of (2.1).

Then, by (2.7), there exists a constant ilp>0 satisfying ||A(/)xo(/)||

^Mia(t), t^to.

Since

II Y~\t, h)xo(t)\\ = || Y-\t, lo)A-l(t)A(t)xo(t)\\

ú\\Y-\t,to)A-Kt)\\\\A(t)xo(t)\\,

it follows that Y~l(t, t0)xo(t) is bounded on [to, °°), which implies

that xo(i)£5o(A, a). Because, by definition So(A, a)C5(A, a), the

theorem is proved.

In general, when comparison technique is used, a property of the

scalar differential equation yields the corresponding property of the

given differential system. A natural question therefore arises whether

a similar situation occurs in the case of perturbability of manifolds.

The following theorem answers this question in the affirmative.

Let 5(1, 1) denote the set of all positive solutions u(t, to, Mo),

toEJ, Uo>0, of the scalar differential equation (2.5) satisfying the

order relation u(t, to, u0) — £ = o(l), t—>oo. Then, we have

Theorem 5. Let the assumptions (i) and (ii) of Theorem 1 hold.

Suppose further that the uniqueness and continuous dependence on

initial values of solutions of (2.1) and (2.5) are assured. Then the

perturbability of 5(1, 1) implies the perturbability of So(A, a).

Proof. Suppose 5(1, 1) is perturbable. If all solutions u(t, to, uo)

of (2.5) are bounded, the assertion clearly follows. Let u(t, to, ß) be

the bounded solutions and u(t, to, y) he the unbounded solutions.

Let/3* = sup/S and y* = '\niy. Evidently ß* = y* and u(t, to, ß*) is the

solution of (2.5). Since 5(1, 1) is perturbable, it is easy to see that

u(t, to, ß*) is unbounded. Notice that the maximal interval of exis-

tence of u(t, to, ß*) may be [io, <r), where cr^ <». In any case, by con-

tinuous dependence of solutions on initial values and the fact that

u(t, to, ß*) is unbounded, given any u0>0, it is possible to find a T0

= T(uo) >0 such that the solution u(t, To, u0) is bounded on [To, «>).

Hence the condition (A) is true and by Theorem 3, the conclusion

follows.
Remarks. A number of remarks are now in order. First of all, the
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proofs of some earlier results have been shortened and clarified.

Theorems 1 and 3 of Brauer and Wong [2] are included in our

Theorem 1. Notice that their proof of Theorem 1 requires the addi-

tional hypothesis of uniqueness of solutions of the scalar equation

(2.5) to work and the extra assumptions of their Theorem 3 become

superfluous.

Theorem 2 of the present paper generalizes a similar result of

Onuchic [5]. Taking A(i) = Y~l(t, t0), a(t)sal and hMH)=git, M),

we see that the hypothesis (H) of Onuchic is verified whenever

||z||^M. Observe also that the conclusion of our result is slightly

more than that of Onuchic's (refer Theorems 1 and 2 in [5]), since,

even without the boundedness of F_1(i, t0)xit), we obtain generalized

eventual asymptotic equivalence of the systems.

At this point, we become aware of the work of Hallam and Heidel

[3] on the perturbability of the asymptotic manifolds. We pointed

out to Hallam that their main result (refer Theorem 4 in [3]) re-

quires additional hypotheses to fix it up. We considered the same

problems and our results (Theorems 3 and 4) significantly weaken

their hypotheses even after the fix-up which Hallam communicated

to us. Namely, we do not require the uniqueness of solutions of

(2.5) and the monotonicity condition of git, u)/u in u. Our Theorem 5

once again establishes the force of the general comparison technique.

It is interesting to note that, instead of using (B) as Hallam and

Heidel have done, we have employed the equivalent condition (A)

which has facilitated in reducing the results to Theorem 0 and con-

sequently in weakening the assumptions.
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