CORRECTION TO A THEOREM OF MINE

R. N. SEN

ABSTRACT. One of the theorems published by me in a previous paper turned out to be incorrect. That theorem is replaced in this note by a corrected one.

In 1966 I published the following theorem [4, Theorem 3, p. 882]: (In what follows C_n denotes an *n*-dimensional conformally-flat Riemannian space and C'_n a C_n of class one.)

"The coordinates of any C'_n may be so chosen that its metric assumes the normal form

$$ds^2 = \sum_i (dx^i)^2 / [f(\theta)]^2, \qquad \theta = \sum_i (x^i)^2,$$

where f is any real analytic function of θ subject to the restriction

$$(n-1)ff' + \theta ff'' - (n-1)\theta f'^2 \neq 0, \qquad (f' = df/d\theta, \text{ etc.})$$
"

In a recent paper [1] G. M. Lancaster has proved that this theorem is incorrect by showing that the above metric does not cover a certain type of C'_n . The purpose of this note is to point out that the metric covers a type of C'_n although it does not cover all C'_n , and also to give a correct form of the theorem. Before doing so I have to say that on checking an error in a previous paper of mine [2, equations (1.8), p. 107], the referee of the present note has drawn my attention to the fact that the restriction in the above theorem applies when $f'' \neq 0$; and at the same time he has given a straightforward solution of

$$(n-1)ff' + \theta ff'' - (n-1)\theta f'^2 = 0$$
, where $f'' \neq 0$,

as

$$f(\theta) = \theta/[K_1 + (n-2)K_2\theta^{n-2}]^{1/(n-2)}, K_1 > 0.$$

I heartily thank the referee for the pains and the interest he has taken in the paper. A correct form of the theorem which must replace the above theorem may then be stated as follows $(f' = df/d\theta, \text{ etc.})$:

A
$$C_n$$
 $(n>3)$ with metric

Received by the editors August 6, 1969 and, in revised form, January 15, 1970. AMS 1970 subject classifications. Primary 53B20.

Key words and phrases. Conformally-flat Riemannian space, Gauss-Codazzi equations.

$$ds^2 = \sum_{i} (dx^i)^2 / [f(\theta)]^2, \qquad \theta = \sum_{i} (x^i)^2,$$

where $f(\theta)$ is any real analytic function of θ subject to the restriction that when $f'' \neq 0$,

$$f(\theta) \neq \theta/[K_1 + (n-2)K_2\theta^{n-2}]^{1/(n-2)}, K_1 > 0, K_2$$
 being constants, is a C'_n . The metric covers the case of space of constant curvature when $f'' = 0$.

That the C_n is a C'_n is proved straightway by showing that it satisfies the Gauss-Codazzi equations. In fact, referring to my paper [4, p. 882] mentioned at the outset, it is not difficult to see that the C_n satisfies equations (7), namely

$$R_{hijk} = \frac{R_{hj}R_{ik} - R_{hk}R_{ij}}{(n-2)\{(n-2)\rho^2 + \rho\bar{\rho}\}} - \frac{\rho\bar{\rho}}{n-2} (g_{hj}g_{ik} - g_{hk}g_{ik}),$$

where ρ^2 and $\rho\bar{\rho}$ are given by equations (10), namely

$$\rho^2 = 4f'(f - \theta f'), \qquad \rho \bar{\rho} = 4(ff' + \theta ff'' - \theta f'^2).$$

We have only to take now the second fundamental tensor b_{ij} as

$$b_{ij} = -\frac{1}{n-2} \left(R_{ij} / \rho + \bar{\rho} g_{ij} \right)$$

and establish the Gauss-Codazzi equations in exactly the same way as they have been done in a previous paper of mine [3, equations (3.8), (5.1)].

REFERENCES

- 1. G. M. Lancaster, *Note on a theorem by Sen*, Proc. Amer. Math. Soc. 19 (1968), 1119-1122. MR 38 #634.
- 2. R. N. Sen, On a type of Riemannian space conformal to a flat space, J. Indian Math. Soc. 21 (1957), 105-114. MR 20 #4868.
- 3. ——, Conformally euclidean space of class one, Indian J. Math. 6 (1964), 93-103. MR 31 #3977.
- 4. —, On conformally-flat Riemannian space of class one, Proc. Amer. Math. Soc. 17 (1966), 880-883. MR 34 #753.

CALCUTTA UNIVERSITY, CALCUTTA, INDIA