COMPLEMENTS TO SOLVABLE HALL SUBGROUPS!

ROBERT GILMAN

ABSTRACT. A Hall subgroup H of a finite group G is a subgroup whose order is relatively prime to its index. We show that if H is solvable and if the way prime power elements of H are conjugate in G is restricted, then G has a quotient isomorphic to H.

Suppose H is a Hall subgroup of G. Let π be the set of prime divisors of the order of H. A number is π if all its prime divisors are in π and π' if none of them are. The index (G:H) is π' . If H has a normal complement in G, then any two elements of H conjugate in G are conjugate by an element of H; i.e. H is c-closed. Taking H to be the permutation group on four letters and G to be the one on five letters shows that a c-closed solvable Hall subgroup need not have a normal complement. However if H has a normal complement we also know that for any subgroup D of H the centralizer in H of D is a Hall subgroup of the centralizer of D. Thus we have

(1) If H has a normal complement, then H is c-closed and $(C(D): C_H(D))$ is π' .

If H is a solvable Hall π subgroup satisfying (1), then by Proposition 1, H has a normal complement. Propositions 2 and 3 give other sufficient conditions. From now on we assume H is a solvable Hall π subgroup of G.

PROPOSITION 1. If for every $x \in G$ and prime power element $h \in H$ such that $h^x = x^{-1}hx \in H$ there exist elements $y_1 \cdot \cdot \cdot y_k$ and subgroups $B_1 \cdot \cdot \cdot B_k$ satisfying

- (a) $x = y_1 \cdot \cdot \cdot y_k$,
- (b) $y_i \in B_i H$, the set of products of elements from B_i and H,
- (c) $B_1 \subset C(h)$, $B_i \subset C(h^{y_1 \cdots y_{i-1}})$ for $2 \leq i \leq k$,
- (d) $(B_i: H \cap B_i)$ is π' ,

then H has a normal complement.

PROOF. By Corollary 1 to Theorem 9 and the corollary to Theorem 10* of [2, §5] or by a transfer argument we can find N normal in G such that HN = G, $N \neq G$. Let $M = H \cap N$, $C_i = B_i \cap N$. We claim that

Received by the editors April 13, 1970.

AMS 1970 subject classifications. Primary 20D20; Secondary 20D10.

Key words and phrases. Solvable Hall subgroup, normal complement, finite group, quotient group, c-closed, transfer, prime power, fusion.

¹ Contains part of the author's dissertation.

if $x \in N$, then (a) through (d) still hold if we substitute M for H and C_i for B_i . It is easy to see that (a), (c) and (d) are valid; we prove (b) by induction on k. Since (G:N) is π , we have by (d) $B_i = C_i(B_i \cap H)$ and $B_iH = C_iH$. If k = 1, $y_1 \in B_1H \cap N$ implies $y_1 \in C_1M$. If $k \ge 2$, let $z = y_1 \cdot \cdot \cdot \cdot y_{k-1}$. By (b) and (c) $h^z \in H$, and so by induction $y_i \in C_iM$ $\subset N$. As before $y_k = z^{-1}x \in B_kH \cap N$ implies $y_k \in C_kM$.

If we restrict k to be 1, then Proposition 1 and (1) give the following corollary:

COROLLARY 1. H has a normal complement iff

- (a) any two prime power elements of H which are conjugate in G are conjugate in H,
 - (b) for any p.p, element $h \in H$, $(C(h): C_H(h))$ is π' .

We remark that if H is not a solvable Hall subgroup of G, but (G:H) is π' and the other hypotheses of Proposition 1 hold, then the proof yields that the maximal solvable π quotients of G and H are isomorphic.

COROLLARY 2 (BRAUER AND SUZUKI). H has a normal complement iff

- (a) any two p.p. elements of H which are conjugate in G are conjugate in H,
- (b) any subgroup E which is the product of a cyclic p group and a q group for p, $q \in \pi$ has a conjugate in H.

PROOF. We show that the hypotheses imply that (b) of Corollary 1 holds. Let E be the direct product of the cyclic group generated by h and a Sylow q subgroup Q of C(h) for any $q \in \pi$.

By (b), $E^x \subset H$. Hence $h^x \subset H$ and $h^x = h^k$ for some $k \in H$ by (a). Taking $y = xk^{-1}$ we have $Q^y \subset E^y \subset H \cap C(h^y) = C_H(h)$. The converse follows from the Schur-Zassenhaus Theorem.

Let H^* be the subgroup of H generated by all intersections $H \cap H^*$, $x \in N(H)$. If H is normal in G set $H^* = H$. Note that $N(H) \subset N(H^*)$.

PROPOSITION 2. Suppose G = RSR for two subgroups R and S satisfying $N(H) \subset R \subset N(H^*)$, $H \subset S$. If H has a normal complement in R and in S, then H has one in G.

Proof. We apply Proposition 1.

Suppose h, $h^x \in H$. If $h \notin H^*$, then $x \in R$ and by (1) we can take $y_1 = x$, $B_1 = C_R(h)$. Otherwise x = rst, r, $t \in R$, $s \in S$ and h^r , $h^{rs} \in H$. In this case $y_1 = r$, $y_2 = s$, $y_3 = t$ and $B_1 = C_R(h)$, $B_2 = C_S(h^r)$, $B_3 = C_R(h^{rs})$.

Because Proposition 1 refers to conjugation of prime power elements, we can apply Alperin's results on fusion. From the definition of a conjugation family [1, Definitions 5.1, 5.3] we obtain:

PROPOSITION 3. For each $p \in \pi$ pick a Sylow p subgroup H_p of H and a conjugation family for H_p . Let $F = \{(D_i, T_i)\}$ be the union of these families and the set $\{(H_p, N(H_p))\}$. If for each $(D_i, T_i) \in F$ and $h \in D_i$, there exists a subgroup B_i satisfying $T_i \subset B_iH$, $B_i \subset C(h)$, $(B_i: H \cap B_i)$ is π' , then H has a normal complement.

In particular for the conjugation family of [1, Theorem 5.1] we have the following result:

COROLLARY 1. If for each $\phi \in \pi$ and ϕ subgroup $D \subset H_{\pi}$ we have

- (a) $(C(D): C_H(D))$ is π' ,
- (b) $N(D) = C(D)N_H(D)$ if $C_{H_p}(D) \subset D$, then H has a normal complement.

BIBLIOGRAPHY

- J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222-241. MR 35 #6748.
- 2. R. Brauer, A characterization of the characters of groups of finite order, Ann. of Math. (2) 57 (1953). 357-377. MR 14. 844.
- 3. ——, On quotient groups of finite groups, Math. Z. 83 (1964), 72-84. MR 28 #3088.
- 4. M. Suzuki, On the existence of a Hall normal subgroup, J. Math. Soc. Japan 15 (1963), 387-391. MR 28 #2157.

STEVENS INSTITUTE OF TECHNOLOGY, HOBOKEN, NEW JERSEY 07030