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PROVABILITY WITH FINITELY MANY VARIABLES

J. DONALD MONK

Abstract. In first-order logic with equality but with finitely

many variables, no finite schema suffices to give a sound and com-

plete axiomatization of the universally valid sentences. The proof

uses a rather deep result from algebraic logic.

The purpose of this note is to give a rather obvious consequence of

a recent theorem of J. S. Johnson [5] (whose proof is based on Monk

[7]). The consequence has to do with provability in languages which

differ from ordinary first-order languages with equality just in hav-

ing only finitely many individual variables. Such languages have

previously been investigated in Henkin [2], Henkin-Tarski [3],

Jaskowski [4], and Pieczkowski [8]. Our result is that it is impossible

to write down finitely many schemata which will give a notion of

proof that is sound and complete. See below for a more precise

formulation; in particular, the notion of schema is made explicit.

What makes our result an easy consequence of Johnson's theorem

is the fairly general knowledge of certain connections between logi-

cally valid sentences in these restricted first-order languages, and

equations which hold identically in each representable polyadic

equality algebra. The main portion of the note is devoted to an expo-

sition of these connections. Thanks are due to the referee for aid in

the formulation of these connections.

We employ the usual set-theoretic notation. f*X is the /-image of

the set X. co is the set of all natural numbers. We assume throughout

that 3ga<co (Our languages will have a variables; the case a^2

is considered in Henkin [2].)

£" is the first-order language with equality with the sequence

(vi'.i<a) of individual variables and with the sequence (¿?,:i<w)

of nonlogical constants, where Ri is an a-ary relation symbol for

each i<u. We treat |, -*, V, and = as primitive logical symbols;

V, A, <->, and 3 are defined in the usual way. An £a-struclure is a

structure lñ = (A, R{)i<a where Ay±0 and RiQaA for each i<u. If
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<p is a formula of £" and 21 is an £a-structure, we denote by <rüä the

set of all sequences xEaA which satisfy <p in Si. If <f>a ="A, we write

21È0, and if 2ll=</> for all 21 we write t=0; <p is then called universally

valid. For our further purposes it is important to have a general

notion of substitution in formulas. Let TE"a and let </> be a formula

of <£". We wish to define S(t)<¡>, the r-substitution of <p. It is the result

of substituting simultaneously vy¿ for v, for each i<a, first renaming

bound variables. Explicitly:

§,(r)RjVaa ■ ■ ■ v„(a-i) = RjVrco ■ ■ • vn(*-t)    for/ E «    and    a- G "a;

HT)(vi = vy) = vTi = vr;-;

s(t)(">) = ~|sM<*>;

S(t)(*-+*) =S(r)«ri-*S(T)iA;

S(t) Vv<0 » Vvß(a)<t>,

where j is the least element of a~r*(a~{i}), tr\ a~{i} =r\a~{i},

and ai=j. It is easily verified that S(t)0 is a proper substitution:

Lemma 1. If %. is an ¿¿"-structure, xE"A, <f> is a formula of £", and

rE"a, then x satisfies §>(t)4> in 2Í iff x o r satisfies <p in 21.

We also need the notion of an instance of a formula of £". Let <f>

be a function mapping <o into the set of formulas of £". For any

formula \j/ of £" we define a formula è(<p, \p) called the <p-instance ofyp
in £a:

ô(d>, RiVto ■ ■ ■ v„(a_i)) = 8(a-)<bi    for i < u',

0(<t>, Vi = Vj)   = Vi = Vj\

í(*,*-*x) =«(*,*)"*«(*,x);

5(<*>, Vr^) = Vvrffo, *).

If T is a set of formulas of £", we let Insl(T) be the set of all instances

of formulas of T in £a. We say that £a is axiomatizable by a schema T

provided that the closure of Inst(T) under detachment and generali-

zation consists exactly of all universally valid formulas of £". Now

we can state our main result:

Theorem. There is no finite schema which axiomatizes £".

As we mentioned at the outset, the proof of the theorem depends

on some connections between £a and a language for polyadic equality
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algebras. A polyadic equality algebra of dimension a (a PEAa) is a

structure

21   =   (A,  + ,   -,   -, 0,  l,5(r),  3(r), ¿,7)re«I,,rça.«a,i<a

satisfying the usual axioms (cf. Halmos [l]). A set polyadic equality

algebra of dimension a (an SPEAa) is a PEAa 21 such that for some

set U (called the domain of 21),

21 = (A, U, H, ~, 0,'U, S(r), 3(r), d,7>re«a,r=a,«a,,<a

where

S(t)X = {uEaU:uorEX};

3(r)X = {« G al7:there is a v E X such that

« [ a~r = n  f a~r);

dy- {uEaV:ui = uj}.

A PEAa 21 is representable (2l£iRPEAa) if 21 is isomorphic to a sub-

direct product of SPEAa's. Note that our notion of a set polyadic

equality algebra of dimension a is essentially the same as Halmos'

notion of an 0-valued functional a-algebra with functional equality.

A simple PEAa is representable iff it is isomorphic to an SPEAa. We

let (?" be an ordinary first-order language with equality suitable for

PEAa's, say with the sequence (w¿:í'<w) of individual variables. If

a is a term of <S"", 21 is a PEAa, and x E"A, we denote by <ra x the value

of a in 21 under the assignment of the value Xi to v,- for each i<a. An

equation <7=t holds in a PEAa 21 provided that <ra x = î* x for all

xE"A ; 21 is then called a model of <7=r. If Y is a set of equations, then

21 is a model of Y if it is a model of each member of Y.

Now we can set up some connections between £" and G>". We define

a mapping T from formulas of £" into terms of <?":

TRiVro • • • vr(a_D = S(t)w(   for t < oj ;

T(Vi = vi) = da;

TCI*) = - T<P;

T(*^*) =-T<p+T*;

rw,^ = -3({»})-7>.

Going the other way we define a mapping <3? from terms of <P" to

formulas of £":
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$W<  =  RiVo  •   ■   •  Va-Ù

$(—er) =      ¡"ícr;

"ï>(a- + t) = <í><7 v $t;

$(<7»t) = <f><r a 4>uV;

$0 = ~|v0 = v0;

$1 = v0 — v0;

$S(t)<7 = S(t)$ct;

$3(r)(7 = 3v„0 • • • 3v,(m_i)*o-,

whereT= {trO, • • • ,a(m — 1)} with(r0< • • • <a(m — 1);

$d„ =  V, = Vj.

If 2Í is an ¿"-structure, then {<j5a :^> a formula of £"} is clearly the

universe of an SPEAa, which will be denoted by 27. By induction on

d> one shows:

Lemma 2. // 21 = (A, 2?,),«, ¿s aw £a-structure and d> is an £"-formula,

then

^¡a = fq\ñR.

If SB is an SPEA„ with domain A and REWB, we set S8ß

= (A, Ri)i<u. Thus S3B is an ¿"-structure. Again using induction on <p

we have:

Lemma 3. // 33 is an SPEAa, REWB, and <p is an £a-formula, then

<£§ffi = Td>®R.

Actually Lemma 3 can easily be derived from Lemma 2 since SßR is

clearly a subalgebra of $3. From Lemmas 2 and 3 we easily obtain:

Lemma 4. For any formula d> of £a the following two conditions are

equivalent :

(i) r=<A;
(ii) Tcpzzl holds in every RPEA«.

Lemma 5. For any formulas <p, \p of £a the following two conditions

are equivalent:

(i) t=4>*^;
(ii) T<f>=T\p holds in every RPEAa.

The following lemmas are established analogously:



I97IJ PROVABILITY WITH FINITELY MANY VARIABLES 357

Lemma 6. If a is a term of (Pa, 93 is an SPEA„, andREwB, then

Lemma 7. If a is a term of (?" and 21 = (A, 2? ,-),■<« is an £"-structure,

then

¿%R = $^a.

Lemma 8. For any term a of <P" the following two conditions are

equivalent :

(i) <r = l holds in every RPEAa;

(ii)  t=<J>o\

Lemma 9. For any terms a, r of 8>a the following two conditions are

equivalent :

(i) (7=t holds in every RPEAa;

(ii)   t=f>(T<->í>T.

By an easy induction on <f> we obtain the following two lemmas:

Lemma 10. If <p is any formula of £", then t= </><-><£ F<p.

Lemma 11. If (pis any formula of £a and tE"ol, then FS (r)<p=S(t) Td>

holds in any PEAa.

By an easy induction on a using Lemma 11 we get:

Lemma 12. If a is any term of <Pa, then cr= T$a holds in every PEA„.

Also, induction on \p using Lemma 11 yields:

Lemma 13. If<p maps co into the set of formulas of £a, $ is a formula

of £a, Sßisa PEAa, and REaB, then

T8(d>, f)* R= T¡P® (TÍ>¡®R:i < w>.

Finally, the following lemma obviously has our theorem as a

corollary, using Theorem 3.5 of Johnson [5].

Lemma 14. If £a is axiomatizable by a schema Y, then RPEAa is the

set of all models of Y', where Y' = { T<p~l:<pEY}.

Proof. If <f>EY, then \=<p, and hence F<p=l holds in every RPEAa,

by Lemma 4. Thus RPEA„ is included in the class of models of Y'.

Conversely, suppose that 93 is a model of Y'. To show that 53£RPEAa,

we shall make use of the fact, essentially due to Tarski (cf. Tarski [9]),

that RPEAa is an equational class. In fact, RPEAa can be character-

ized by a set of equations of the form <rssl. Let, then, o" = l be an
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equation holding in every RPEAa. Then by Lemma 8 we have |=i»(r.

Now

(1) for any formula^ of £", if \=\p, then 7^ = 1 holds in S3.

In fact, let A = [yp: T\p=l holds in 33}. If <j> maps co into the set of

formulas of £" and ^Gr, we easily infer from Lemma 13 and the

fact that 93 is a model of T' that ô(</>, \p) GA. Hence Inst(T)czA. Since

A is clearly closed under detachment and generalization, it follows

from the hypothesis of the lemma that {<f>: 1=0} ÇZA. Hence (1) holds.

By (1), TQazzl holds in 93. From Lemma 12 the desired result—

that <r=l holds in 93—now follows.
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