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PROVABILITY WITH FINITELY MANY VARIABLES

J. DONALD MONK

ABSTRACT. In first-order logic with equality but with finitely
many variables, no finite schema suffices to give a sound and com-
plete axiomatization of the universally valid sentences. The proof
uses a rather deep result from algebraic logic.

The purpose of this note is to give a rather obvious consequence of
a recent theorem of J. S. Johnson [5] (whose proof is based on Monk
[7]). The consequence has to do with provability in languages which
differ from ordinary first-order languages with equality just in hav-
ing only finitely many individual variables. Such languages have
previously been investigated in Henkin [2], Henkin-Tarski [3],
Jaskowski [4], and Pieczkowski [8]. Our result is that it is impossible
to write down finitely many schemata which will give a notion of
proof that is sound and complete. See below for a more precise
formulation; in particular, the notion of schema is made explicit.

What makes our result an easy consequence of Johnson’s theorem
is the fairly general knowledge of certain connections between logi-
cally valid sentences in these restricted first-order languages, and
equations which hold identically in each representable polyadic
equality algebra. The main portion of the note is devoted to an expo-
sition of these connections. Thanks are due to the referee for aid in
the formulation of these connections.

We employ the usual set-theoretic notation. f*X is the f-image of
the set X. w is the set of all natural numbers. We assume throughout
that 3<a<w (Our languages will have a variables; the case a <2
is considered in Henkin [2].)

£ is the first-order language with equality with the sequence
(vi:i<a) of individual variables and with the sequence (R;:i<w)
of nonlogical constants, where R; is an a-ary relation symbol for
each 1<w. We treat ~ ], =, V, and = as primitive logical symbols;
V, A, &, and 3 are defined in the usual way. An £ostructure is a
structure A =(4, R.;)ico where 450 and R;C24 for each i<w. If
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¢ is a formula of £* and ¥ is an £=-structure, we denote by ¢¥ the
set of all sequences x4 which satisfy ¢ in . If §* =24, we write
AE=¢, and if AE=¢ for all A we write Eo; ¢ is then called universally
valid. For our further purposes it is important to have a general
notion of substitution in formulas. Let &%« and let ¢ be a formula
of £2 We wish to define $(7)¢, the r-substitution of ¢. It is the result
of substituting simultaneously v, for v; for each ¢ <e, first renaming
bound variables. Explicitly:

8(T)RVao * * * Vata—1) = RjVrs0 * * * Viga—1y fOrjEw and o & a;
S(T)(vi = v;) = v = vij;
() (1) = " B(n)¢;
8(r)(¢ = ¥) = 8(1)é = 8(1)¥;
8(1) Vvip = Vv;8(a)9,

where j is the least element of a~r*(a~{3}), o] a~{i} =7la~{i},
and ot=j. It is easily verified that $(7)¢ is a proper substitution:

LEMMA 1. If A is an L>-structure, xS°A, ¢ is a formula of £°, and
7 E%, then x salisfies $(1)¢ in U iff x o 7 satisfies p in .

We also need the notion of an instance of a formula of £ Let ¢
be a function mapping w into the set of formulas of £ For any
formula ¢ of £* we define a formula 8(¢, ¥) called the ¢-instance of Y
n £

5(4), Rivey - - - V,(a_l)) = S(G')Cﬁ.' fori < w;
(o, vi=v)) =vi=v;;
oo, " W) ="1o(e, ¥);
6(¢) Znd X) = 6(¢’ 'p) - 8(¢) X);
8(o, Yv) = Vvid(e, ¥).

If T is a set of formulas of £2, we let Inst(T') be the set of all instances
of formulas of T in £=. We say that £ is axiomatizable by @ schema T'
provided that the closure of Inst(I') under detachment and generali-
zation consists exactly of all universally valid formulas of £2. Now
we can state our main result:

THEOREM. There is no finite schema which axiomatizes £°.

As we mentioned at the outset, the proof of the theorem depends
on some connections between £ and a language for polyadic equality
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algebras. A polyadic equality algebra of dimension o (a PEA,) is a
structure

21 = <A’ +s Sy T 01 1; S("')’ E(I‘), ds‘j rE%a,I'Ca,i<a,j<a

satisfying the usual axioms (cf. Halmos [1]). A set polyadic equality
algebra of dimension a (an SPEA,) is a PEA, U such that for some
set U (called the domain of ),

A= <A) U, n) ~ O)GU’ S(T): a(r‘)’ do‘j)rE"a.I‘sa.l'<a.i<a

where

S(X ={uE€U:uor € X};

3I(I')X = {u €*U:thereis a v € X such that

4l a~T =19 | a~T};

d.‘j = {u cU:iu; = u;}.
A PEA, U is representable (AERPEA,) if A is isomorphic to a sub-
direct product of SPEA,’s. Note that our notion of a set polyadic
equality algebra of dimension « is essentially the same as Halmos’
notion of an 0-valued functional a-algebra with functional equality.
A simple PEA, is representable iff it is isomorphic to an SPEA,. We
let ®* be an ordinary first-order language with equality suitable for
PEA,’s, say with the sequence (w;:i<w) of individual variables. If
o is a term of ®, ¥ is a PEA,, and x €44, we denote by ¢* x the value
of ¢ in U under the assignment of the value x; to v; for each 1<w. An
equation ¢=7 holds in a PEA, ¥ provided that ¢¥ x=# x for all
xE%A; Nis then called a model of o=7. If T is a set of equations, then
9 is a model of T if it is a model of each member of T'.

Now we can set up some connections between £ and ®*. We define
a mapping T from formulas of £* into terms of ®=:

TR * * * Veta—1) = S(T)w; for i < w;
T(vi = vy) =dy;
T(T1¢) = — T;
T—=>y) ==—To+ TY;
TV = — 3({i}) — Ts.

Going the other way we define a mapping ® from terms of ®= to
formulas of £:
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dw; = Rywvo * * * Vaui;
&(—0q) = " |¥o;
®(oc 4 7) = $o v b7;

B(ge7) = Bc A BY;

B0 = vy = vy;

Pl = vy = vy,
®S(1)0 = 8(1)Po;
®3(I)o = vy + * + WVo(m_1)Po,

where'= {00, - - - ,0(m—1)} witho0< - - - <g(m—1);
@d.’j= Vi = Vj.

If A is an Le-structure, then {cﬁﬂ :¢ a formula of £°‘} is clearly the
universe of an SPEA,, which will be denoted by 9. By induction on
¢ one shows:

LEMMA 2. If U=(A4, R:)icu 1s an L2-structure and ¢ is an L£L-formula,
then

é% = TAR.

If 8 is an SPEA, with domain 4 and RE&“B, we set Br
=(A, R:)i<u- Thus B? is an L£-structure. Again using induction on ¢
we have: :

LeEMMA 3. If B is an SPEA,, R&E“B, and ¢ is an L*-formula, then
$B% = TBR.

Actually Lemma 3 can easily be derived from Lemma 2 since BZ is
clearly a subalgebra of 8. From Lemmas 2 and 3 we easily obtain:

LEMMA 4. For any formula ¢ of £* the following two conditions are
equivalent:

() E¢;

(i) Tp=1 holds in every RPEA,.

LEMMA 5. For any formulas ¢, ¥ of £= the following two conditions
are equivalent:

(i) Fooy;

(ii) T¢=TY holds in every RPEA,.

The following lemmas are established analogously:
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LEMMA 6. If 0 is a term of ®*, B is an SPEA,, and RE“B, then
GBR = BoP",
LEMMA 7. If 0 is a term of ®* and A= (A4, R;)ic, is an L-structure,
then
R = &g,

LEMMA 8. For any term o of ®% the following lwo conditions are

equivalent:
(1) =1 holds in every RPEA,;
(ii) E®o.

LEMMA 9. For any terms o, T of ®% the following two conditions are

equivalent:
(i) o= holds in every RPEA,;
(ii) EPo—dr.

By an easy induction on ¢ we obtain the following two lemmas:
LeEMMA 10. If ¢ is any formula of £2, then =¢—>PT¢.

LeEMMA 11, If ¢ is any formula of £*and 1 E%a, then TS(1)¢p=S(1)T¢
holds in any PEA,.

By an easy induction on ¢ using Lemma 11 we get:
LEMMA 12. If ¢ is any term of ®°, then 0 =T®q holds in every PEA,.

Also, induction on ¢ using Lemma 11 yields:

LemMA 13. If ¢ maps w into the set of formulas of £2, Y is a formula
of £%, B is a PEA,, and RE“B, then

[y, g ~ ~
T6(6,9)® R = T4® (TepBR:i < w).

Finally, the following lemma obviously has our theorem as a
corollary, using Theorem 3.5 of Johnson [5].

LeMMA 14. If £ is axiomatizable by a schema T, then RPEA, is the
set of all models of T, where T = {T¢=1:¢ET'}.

Proor. If ¢ ET', then =¢, and hence T¢p =1 holds in every RPEA,,
by Lemma 4. Thus RPEA, is included in the class of models of I".
Conversely, suppose that B isa model of I'V. To show that & RPEA,,
we shall make use of the fact, essentially due to Tarski (cf. Tarski [9]),
that RPEA, is an equational class. In fact, RPEA, can be character-
ized by a set of equations of the form ¢=1. Let, then, 0=1 be an
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equation holding in every RPEA,. Then by Lemma 8 we have =®o.
Now

(1) for any formula ¢ of £, if =y, then Ty =1 holds in 8.

In fact, let A= {t[/: Ty =1 holds in B } If ¢ maps w into the set of
formulas of £* and Y &ET, we easily infer from Lemma 13 and the
fact that 8 is a model of I'V that 6(¢, ¥) EA. Hence Inst(I") CA. Since
A is clearly closed under detachment and generalization, it follows
from the hypothesis of the lemma that {¢: E¢ } CA. Hence (1) holds.

By (1), T®s=1 holds in 8. From Lemma 12 the desired result—
that 0=1 holds in 8—now follows.
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