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OSCILLATION CRITERIA FOR ELLIPTIC SYSTEMS

W. ALLEGRETTO AND C. A. SWANSON

Abstract. Oscillation criteria are established for quasilinear

elliptic partial differential systems of second order in unbounded

domains of Euclidean space. The main departures from earlier in-

vestigations are: (1) systems of partial differential equations are

considered; (2) the equations are nonlinear; (3) the matrices in-

volved are not required to be positive definite; and (4) a direct

method of the Calculus of Variations is used rather than the

earlier majorization method.

1. Introduction. The first general oscillation criterion for partial

differential equations was obtained by I. M. Glazman in 1958 [5].

This is a natural extension of the classical Kneser-Hille criterion to

the Schrödinger equation X/2u-\-B(x)u = 0 (xERn) and involves the

limiting behavior of the minimum of B(x) on the sphere |x| =r as

r—->oo. An analogue of Glazman's theorem and other oscillation cri-

teria were obtained recently for second order linear and quasilinear

elliptic equations by Allegretto [l], [2], [3], Headley and Swanson

[7], and Swanson [12]. Some extensions to elliptic equations of order

2m also have been derived by a modification of Glazman's majoriza-

tion method [4], [6].

The oscillation criteria cited above all involve either limits at

infinity or integrals of suitable majorants (or minorants) of the

coefficients of the differential operator. The results are derived by

comparison of the given differential equation with a separable equa-

tion possessing a solution with an oscillatory radial function as a

factor, and use of any of the well-established one dimensional oscilla-

tion criteria.

Our first purpose here is to develop oscillation criteria for partial

differential equations which do not depend upon one dimensional

criteria: We dispense with the majorization procedure altogether and

use a direct method of the type used in the Calculus of Variations.

Unlike all earlier results, our criteria are not one dimensional in

character if »> 1. Specialization to the case n = 1 yields either a new

oscillation criterion for ordinary differential equations (or systems) or

an independent proof of a known result. Our criteria involve integrals
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of the actual coefficient functions appearing in the differential equa-

tion (rather than majorants) over the unbounded domain under

consideration.

As a second departure from earlier investigations, we consider

systems of partial differential equations. In the linear case, comparison

theorems of Sturm's type for strongly elliptic systems were obtained

by Kuks [lO], Kreith [9], and Swanson [15]. Here we shall employ

the matrix formulation of the system, and increase the generality by

considering both the quasilinear case and inequalities for associated

differential forms.

Oscillation criteria for matrix ordinary differential equations were

obtained recently by Tomastik [l6] and Swanson [14]. The oscilla-

tory character of matrix solutions was established only for prepared

matrices (also called conjugate matrices by some authors; in the linear

case, the column vectors of a prepared matrix constitute a conjugate

basis for the differential system in the language of M. Morse [ll]).

Indeed, easy examples show that the conclusions of the theorems in

[l4] and [l6] are false without the hypothesis that the matrix so-

lutions are prepared. Here we shall give a direct extension of the one

dimensional results to w-dimensions without appealing to the former.

2. Definitions and notations. Oscillation criteria will be established

for the matrix partial differential equation

LV =; ¿ DiiAi^DjV] + B(x, V, DiV, • • • , DnV)V = 0,
(1) .-,y-i

A ■   —   A ■■

and more generally for the inequality VTLV^0 (as a form) in un-

bounded domains G in w-dimensional Euclidean space R". As usual,

points in i?n will be denoted by x= (x1, • • ■ , x") and differentiation

with respect to x* by Z>„ i = 1, • • • , n. The following assumptions will

be made throughout:

Assumptions.
(1) B, V, and each An are w-square real matrix functions.

(2) Each A a is symmetric and of class C1(G).

(3) The ww-square matrix (Ai¡(x)), i,j=\, ■ • ■ , n, is positive

semidefinite in G.

(4) B is symmetric, continuous, and bounded below (as a form) for

xEG and for all values of the entries of V and its partial derivatives.

The domain 3) of Z is defined as the set of all rw-square matrix

functions VEC2(G).

Let M be a nonempty regular bounded domain within G, and let F

be the functional defined by
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F[u, V; M] =  f r E Di^Ai^DjU
J M L   tj

- Mr£(x, F(x), /?iF(x), • • • , Z?bF(x))m d.x

for any piecewise C1 w-vector function u on Af and anytFG3)-

A matrix FGC'(G) is said to be prepared (or conjugate)[iff Wf(x) is

symmetric for each i = 1, • • ■ , w, where

(2) Wi(x) = ¿Fr(x)^,J(x)JDJF(x).

This definition is analogous to M. Morse's definition [ll] of a con-

jugate basis for an ordinary linear system (n=i), which has sub-

sequently been modified and extended by Kuks [lO], Tomastik [l6],

Swanson [14], and others.

The following natural extension of the well-known one dimensional

definition of an oscillatory differential equation (or system) will be

used in the sequel. The notation

Ga = GC\ {xE Rn:\x\  > a},       0 < a < oo,

will be used throughout.

Definition. The matrix differential inequality VTLV^0 is termed

(weakly) oscillatory in an unbounded domain GERn iff every prepared

solution F of the inequality has the property that det V(x) vanishes at

some point of Ga for all a > 0.

This definition has been used by Kuks [lO] in the linear case, by

Kreith [8] when m = 1, and by Tomastik [ló]when« = l.

3. Oscillation criteria.

Theorem 1. The inequality VTL V ̂  0 (as a form) is oscillatory in an

unbounded domain G if

(1) for arbitrary a>0, Ga contains a nonempty regular bounded do-

main Ma ; and

(2) there exists a piecewise C1 vector function ua on Ma such that ua

vanishes identically on dMa and F[u„, V; Ma] < Ofor every differentiable

matrix Vwith det V(x) ¿¿0 on Ma.

Proof. Suppose to the contrary that VTLV^0 is not oscillatory,

i.e. there exists a positive number a and a prepared solution F of the

inequality such that det V(x) ¿¿0 in Ga. Then a unique solution w(x)

of u(x) = V(x)w(x) exists in Ga for every w-vector u(x). The following
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identity, similar to that in [13, p. 188] is easily verified by differentia-

tion for any piecewise C1 vector function u :

uT Z A </(*)( D¡V)w\£ (VDiwYAi^VDfä, rio,
i,3 *

(3) = S T>iUTAi^DjU - uTB(x, V, DJ?, ■    ■ , DnV)u
i.i

+ (Vw)T(LV)w + £ wT[Wi(x) - W?(x)]DiW,
i

where Wi(x) is given by (2). Since Fis prepared, the last term on the

right side is identically zero. Taking u to be the vector function Uj,

(b>a) in the hypothesis (2) and integrating over Mb, we obtain the

contradiction F[uh, V; Mb\ =^0.

The following result is an application of Theorem 1 in the case that

G coincides with Rn.

Theorem 2.  The inequality  VTLV^0 is oscillatory in Rn if (in

addition to the assumptions stated in §2)

(1) the mn-square matrix (A„(x)) is bounded above (as a form); and

(2) there exists a diagonal element Bkk of B such that

(4) lim a1-" f   Bkk[x, V(x), DiV(x), ■ ■ ■ , DnV(x)]dx = +
a—* « J ä„

for every differentiable matrix V(x) with det V(x) ¿¿0 for all sufficiently

large \x\, where Sa denotes the ball {xE-Rn:|x| <a}.

Proof. The domain Ma of Theorem 1 will be specialized to the

annular domain

Mab = {x E Rn-a <  I x|   < b)

(b>a + 2). Define the piecewise C1 vector function U& on M^ by

uab(x) =ek<pab(x), where ek is the unit vector with 1 in the Jfeth position

and 0 elsewhere, and

<¡>ab(x) = r — a        if a g r ^ a -f 1,

= 1 iia + i <r£b-l,

= b - r       if & — Krgi

(r=|x|). Clearly Mab is a regular bounded domain with MabEGa,

and uab = 0 on dMab for arbitrary a and b, a>0, b>a-\-2. The con-

clusion will then follow from Theorem 1 if it can be shown that

F[uab, V; Mob] <0 for sufficiently large b and for every differentiable V

with det V(x) ¿¿0 on M^.
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To prove this, first observe that

I       E D&TaiAij(x)DjUabdx
J M ab   i.i

è«(     T, (Di<t>ab)2dx
(5) J Mai    i

= a I        I V<pab 12dx
J Mah

= an~lwn[(a + 1)" — an + bn — (b — 1)"],

where a is an upper bound on (Aa(x)) and <oB denotes the area of the

unit (« —l)-sphere. (wi = 1 by convention.) Similarly

f    uTahB(x, V, DiV, ■ ■ ■ , DaV)uabdx
J Mab

/a+l
(r — a)2rn~ldr

(6)

+  f Bkk(x, V, DiV, ■
J    /VfnXl.n_I

DnV)dx
Ma+l,b-l

+ ßun \      (b - rYr^-Hr,
J b-1

where ß is a lower bound on P(x, V, DiV, ■ ■ ■ , DnV). Subtracting (6)

from (5) we find that

bl-»F[uah, V;Mah] g b'-"[g(a) + h(b)\

0) C
- b1-» Bkk(x, V, DiV, • • • , DnV)dx,

J Afo+l.6-1

where g(a) is independent of b and bx~nh(b) is bounded in 2 gô < oo.

However, the last term on the right side of (7) has limit — oo as b—>oo

by the hypothesis (4). Hence F\uab, V; Mob] <0 for sufficiently large

b, and the conclusion follows from Theorem 1.

Theorem 2 remains true if (4) is replaced by the obviously stronger

condition

(8) lim a1-" \     tr B[x, V(x), DiV(x), ■ ■ ■ , DnV(x)]dx = +
a—* to J .q„

where tr B denotes the trace of P. In the special case that B is positive

definite, (4) can be replaced by the equivalent condition
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(9)        lim a1-" I    \[x, V(x), DiV(x), ■ ■ ■ , DnV(x)]dx = + oo
a-. » J Sa

where X denotes the largest eigenvalue of B.

Theorem 2 requires neither (Ay) nor B to be positive definite. The

positive semidefiniteness of (Ay) is essential, but an analogue of

Theorem 2 can be obtained without the assumptions that B is

bounded below and (Ay) is bounded above. If w=l, conditions (4),

(8), and (9) reduce to those given recently by Tomastik [16] and

Swanson [14].
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