ONE-SIDED BOUNDARY BEHAVIOR FOR CERTAIN HARMONIC FUNCTIONS

T. K. BOEHME AND MAX L. WEISS1

ABSTRACT. Some results concerning the maximal ideal space of H^{∞} of the disk are applied to harmonic functions. The methods yield a Lindelöf type theorem for harmonic functions and extend to bounded harmonic functions a criterion of Tanaka which is necessary and sufficient in order that the boundary value function be one-sided approximately continuous.

1. Introduction. We are concerned in this paper with connections between the one-sided behavior of an L^{∞} function at a point of the unit circle, $C = \{z : |z| = 1\}$, and the boundary behavior of the harmonic extension of the function into the unit disc, $D = \{z : |z| < 1\}$. Our techniques consist mainly of combining certain concrete estimates for harmonic measures with some facts about the Banach algebra, H^{∞} , of bounded analytic functions on D. We assume for this latter area that the reader is familiar with the contents of Chapter 10 of Hoffman's book, [3], and with [4] and [5].

The main focal point is the introduction of a class of homomorphisms in the maximal ideal space of H^{∞} which we call the "barely tangential homomorphisms." These homomorphisms play a role for the one-sided boundary behavior of L^{∞} functions similar to that played by the radial homomorphisms for two-sided behavior in [1].

§2 is mainly devoted to an intrinsic study of the barely tangential homomorphisms. In §3 we obtain a theorem (Theorem 3.1) characterizing one-sided approximate continuity from above of an L^{∞} function in terms of the behavior of the function on the supports of the representing measures of upper barely tangential homomorphisms. Subsequently, we easily obtain a result of Tanaka [6, Theorem 5] characterizing one-sided approximate continuity. As a final result we prove a "Lindelöf-type theorem" for L^{∞} functions.

2. Barely tangential homomorphisms. We first recall that the collection, H^{∞} , of bounded analytic functions on D forms a function algebra with pointwise operations and the supremum norm. Its maximal ideal space, \mathfrak{D} , is a compactification of D, [3]. Every homomorphism in \mathfrak{D} can be approached by a universal net in D or by one

Received by the editors February 19, 1970.

AMS 1969 subject classifications. Primary 3120.

Key words and phrases. Boundary behavior, harmonic functions.

¹ Both authors were supported in part by NSF Grant GP 13284.

in any dense subset of D. One can also represent H^{∞} as a subalgebra of the Banach algebra, L^{∞} , of all bounded measurable functions on C. We rely on the references for a complete description of these connections. We remark here that for any L^{∞} function f on C we will continue to denote as "f" any of the standard representations of f on D, \mathfrak{D} , or C.

For simplicity we restrict our attention to the fiber, \mathfrak{D}_1 , above 1, i.e., those homomorphisms which are approached by nets tending to 1. From here on out we will simply assume phrases such as, "at 1." The collection, \mathfrak{S} , of such homomorphisms which are approached within a Stolz angle are called the *Stolz homomorphisms*. In [5] the w^* -closure, $\mathfrak{S}^- = \mathfrak{L}$, of the Stolz homomorphisms is called the *Lindelöf homomorphisms*.

DEFINITION 2.1. Let S and L be the Stolz and Lindelöf homomorphisms, respectively. Then, the collection, L = L - S, is called the *barely tangential homomorphisms*. Those points, L = L - S, of L = L - S which are approached by nets tending to 1 tangentially from above [below] are termed the *upper* [lower] barely tangential homomorphisms.

Our first result shows a relationship between \mathfrak{B} and \mathfrak{L} which we shall use once in §3. We recall that for any function algebra, A, on a compact Hausdorff space X, each point $h \in X$ has a representing measure, μ_h , spread on the Šilov boundary of A.

LEMMA 2.2. Let A denote the restriction algebra of H^{∞} to the Lindelöf homomorphisms, &. Then, the Šilov boundary of A is contained in the barely tangential homomorphisms, &. If h is a Stolz homomorphism, then for any representing measure μ_h we have $\mu_h(\mathbb{G}^+) > 0$ and $\mu_h(\mathbb{G}^-) > 0$. In particular, if $f \in H^{\infty}$, then f has radial limit α if and only if f is constantly α on \mathbb{G}^+ (or on \mathbb{G}^-).

PROOF. We show that no Stolz homomorphism is contained in the Silov boundary. Let $h \in \mathbb{S}$. Since by [5, §3] \mathbb{S} is open in \mathfrak{D}_1 and since \mathbb{S} is compact there is a neighborhood N of h such that $N \subset \mathbb{S}$ and $N \cap \mathbb{S} = \emptyset$. Now, suppose $f \in H^{\infty}$ and f peaks on N, i.e., $|f(h_1)| = ||f||_{\mathbb{S}}$ for some $h_1 \in N$. Choose some Gleason part, P, of \mathfrak{D} which contains such a point in N. Using the results of [5, (especially §6)] we see that $P \subset \mathbb{S}$ and $P \cap \mathbb{S} \neq \emptyset$. Since the restriction of f to P is analytic and achieves its maximum modulus on P it is constant. Thus f peaks at some point of $P \cap \mathbb{S}$. Consequently, we have shown that f peaks outside N. Therefore, h cannot be in the Silov boundary and the latter is contained in \mathbb{S} .

Next, let $h \in \mathbb{S}$ and let μ_h be a representing measure. Let u be the harmonic measure of $C^+ = \{e^{i\theta} : 0 \le \theta \le \pi\}$. Let v be a harmonic con-

jugate and let $f = \exp(u + iv)$. Then |f| = e on \mathbb{G}^+ , |f| = 1 on \mathbb{G}^- and 1 < |f| < e on \mathcal{L} . If $\mu_h(\mathbb{G}^+) = 0$, then we would have $|f(h)| \le 1$ which is impossible. Thus $\mu_h(\mathbb{G}^+) > 0$, and similarly $\mu_h(\mathbb{G}^-) > 0$.

Finally, suppose $f \in H^{\infty}$. If f has radial limit α , then f has Stolz limit α and thus $f = \alpha$ on S. Consequently, by continuity $f = \alpha$ on \mathbb{S}^+ (or \mathbb{S}^-). Conversely, suppose $f = \alpha$ on \mathbb{S}^+ (or \mathbb{S}^-). Let μ_h be a Jensen measure for $h \in S$. Then.

$$\log |f(h) - \alpha| \leq \int_{\alpha^{+} \cup \alpha^{-}} \log |f - \alpha| d\mu_{h}.$$

Since $\mu_h(\mathbb{G}^+) > 0$ and $f - \alpha = 0$ on \mathbb{G}^+ , the integral above equals $-\infty$ and so $f(h) = \alpha$. Thus, $f = \alpha$ on S and a fortior i f tends to α radially.

In order to avoid exactly similar cases we now concentrate entirely on the upper barely tangential homomorphisms.

We next define a cluster set which will allow us to state more concretely Theorem 3.3 in §3. Each Stolz angle approach can be written as $\theta = c(1-r)$ and as c increases the approach tends more and more toward an upper tangential approach. Given $d \le c$ we denote by $\mathbb{S}_{d,c}$ the collection of all homomorphisms in \mathfrak{D}_1 which are approached by nets corresponding to all Stolz angle approaches, a, such that $d \le a \le c$. Given $f \in L^{\infty}$ define $S_{d,c}(f, 1)$ as the collection of all cluster values of $f(re^{i\theta})$ as $re^{i\theta} \to 1$ and $d \le \lim \theta/(1-r) \le \lim \theta/(1-r) \le c$. It is not hard to see that we then have $S_{d,c}(f, 1) = f[\mathbb{S}_{d,c}]$. Now, define $B^+(f, 1)$, the upper barely tangential cluster set of f at 1 by

$$B^{+}(f, 1) = \bigcap_{d \geq 0} \left[\bigcup_{c \geq 0} S_{d,c}(f, 1) \right]^{-}.$$

LEMMA 2.3. Let $f \in L^{\infty}$. Then, $B^+(f, 1) = f[\mathfrak{B}^+]$.

PROOF. Suppose $h_0 \in \mathbb{G}^+$. Then, there is a net $h_{\alpha} \in \mathbb{S}$ such that $h_{\alpha} \to h_0$. Clearly, for each $d \geq 0$, h_{α} is eventually in $\bigcup_{c \geq 0} \mathbb{S}_{d,c}$. Thus, $h_0 \in \bigcap_{d \geq 0} \left[\bigcup_{c \geq 0} \mathbb{S}_{d,c}\right]^-$. On the other hand suppose $h_0 \in \bigcap_{d \geq 0} \left[\bigcup_{c \geq 0} \mathbb{S}_{d,c}\right]^-$. Then, for each $d \geq 0$, $h_0 \in \left[\bigcup_{c \geq 0} \mathbb{S}_{d,c}\right]^-$. Since $\left[\bigcup_{c \geq 0} \mathbb{S}_{d,c}\right]^- - \mathbb{S} = \mathbb{G}^+$ for each d, $h_0 \in \mathbb{G}^+$. Therefore,

$$\mathfrak{G}^+ = \bigcap_{d \geq 0} \left[\bigcup_{c \geq 0} \mathbb{S}_{d,c} \right]^-.$$

Since the intersection is over a nested system of compact sets and since f is continuous on $\mathfrak D$ we have

$$f[\mathfrak{G}^+] = \bigcap_{d \geq 0} \left[\bigcup_{e \geq 0} f[\mathfrak{S}_{d,e}] \right]^- = B^+(f, 1).$$

Given a measurable subset, M, of the circle, C, we let u_M denote the harmonic measure of C,

$$u_{M}(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_{M}(e^{it}) \frac{1 - r^{2}}{1 - 2r\cos(\theta - t) + r^{2}} dt$$

where χ_M is the characteristic function of M. If M is a subset of the upper portion of the unit circle, $C^+ = \{e^{i\theta}: 0 \le \theta \le \pi\}$, we let

$$d(M) = \lim_{\theta \to 0^+} \inf \frac{1}{\theta} \int_0^{\theta} \chi_{M}(e^{it}) dt, \qquad D(M) = \lim_{\theta \to 0^+} \sup \frac{1}{\theta} \int_0^{\theta} \chi_{M}(e^{it}) dt$$

denote the lower and upper densities of M at 1 from above.

Our basic results rely heavily on the following estimates for harmonic measures.

LEMMA 2.4. Let M be a measurable subset of C⁺. If d(M) = D(M), then for every $h \in \mathbb{G}^+$, $u_M(h) = d(M)$.

LEMMA 2.5. Let M be a measurable subset of C⁺. Then, there exists an $h \in \mathbb{R}^+$ with

$$u_{\mathbf{M}}(h) \geq \frac{2}{\pi} \tan^{-1} \frac{D(\mathbf{M})}{2\sqrt{1-D(\mathbf{M})}}$$

Proof of 2.4. Let $\epsilon > 0$ and choose $0 < \theta_0 < \pi/2$ so that, for $0 \le \theta \le \theta_0$,

$$d(M) - \epsilon < \frac{1}{\theta} \int_{0}^{\theta} \chi_{M}(e^{it}) dt \leq d(M) + \epsilon.$$

Since the harmonic measure of $M \cap [\theta_0, \pi]$ tends to zero as $z \to 1$ we have, as $z \to 1$,

$$u_{M}(re^{i\theta}) = o(1) + \frac{1}{2\pi} \int_{0}^{\theta_{0}} P_{r}(\theta - t) \chi_{M}(e^{it}) dt$$

where $P_r(t)$ is the Poisson kernel. Integrating by parts we have

$$\begin{split} \frac{1}{2\pi} \int_0^{\theta_0} P_r(\theta - t) \chi_M(e^{it}) dt &= \frac{P_r(\theta - \theta_0)}{2\pi} \int_0^{\theta_0} \chi_M(e^{is}) ds \\ &+ \frac{1}{2\pi} \int_0^{\theta_0} P_r'(\theta - t) \int_0^t \chi_M(e^{is}) ds \ dt. \end{split}$$

Thus, as $z \rightarrow 1$,

$$u_{M}(re^{i\theta}) = o(1) + \frac{1}{2\pi} \int_{0}^{\theta_{0}} P_{r}'(\theta - t) \int_{0}^{t} \chi_{M}(e^{is}) ds dt.$$

For $0 \le t \le \theta < \pi/2$, $P'_r(\theta - t) \le 0$ so

$$(d(M) + \epsilon)tP'_{r}(\theta - t) \leq P'_{r}(\theta - t) \int_{0}^{t} \chi_{M}(e^{is})ds \leq (d(M) - \epsilon)tP'_{r}(\theta - t);$$

while, for $\theta \le t \le \theta_0$, $P'_r(\theta - t) \ge 0$ so

$$(d(M) - \epsilon)tP'_r(\theta - t) \leq P'_r(\theta - t) \int_0^t \chi_M(e^{is})ds \leq (d(M) + \epsilon)tP'_r(\theta - t).$$

Therefore,

$$o(1) + \frac{d(M) + \epsilon}{2\pi} \int_0^{\theta} t P_r'(\theta - t) dt + \frac{d(M) - \epsilon}{2\pi} \int_{\theta}^{\theta_0} t P_r'(\theta - t) dt$$

$$\leq u_M(re^{i\theta})$$

$$\leq o(1) + \frac{d(M) - \epsilon}{2\pi} \int_0^{\theta} t P_r'(\theta - t) dt + \frac{d(M) + \epsilon}{2\pi} \int_0^{\theta_0} t P_r'(\theta - t) dt.$$

Now,

$$\int_{0}^{\theta} t P_{r}'(\theta - t) dt = \frac{-(1+r)\theta}{1-r} + 2 \tan^{-1} \left\{ \frac{1+r}{1-r} \tan \frac{\theta}{2} \right\},$$

$$\int_{0}^{\theta_{0}} t P_{r}'(\theta - t) dt = o(1) + \frac{(1+r)\theta}{1-r} + 2 \tan^{-1} \left\{ \frac{1+r}{1-r} \tan \frac{\theta_{0}-\theta}{2} \right\},$$

so that if $re^{i\theta} \rightarrow 1$ in such a way that $\theta/(1-r) \rightarrow c \ge 0$, we have

$$(d(M) + \epsilon) \left[\frac{-c}{\pi} + \frac{\tan^{-1} c}{\pi} \right] + (d(M) - \epsilon) \left[\frac{c}{\pi} + \frac{1}{2} \right]$$

$$\leq \liminf u_{M}(re^{i\theta}) \leq \limsup u_{M}(re^{i\theta})$$

$$\leq (d(M) - \epsilon) \left[\frac{-c}{\pi} + \frac{\tan^{-1} c}{\pi} \right] + (d(M) + \epsilon) \left[\frac{c}{\pi} + \frac{1}{2} \right].$$

Since this is true for every $\epsilon > 0$, we have as $re^{i\theta} \rightarrow 1$, $\theta/(1-r) \rightarrow c \ge 0$,

$$d(M)\left[\frac{1}{2} + \frac{\tan^{-1}c}{\pi}\right]$$

 $\leq \liminf u_M(re^{i\theta}) \leq \limsup u_M(re^{i\theta}) \leq d(M) \left[\frac{1}{2} + \frac{\tan^{-1}c}{\pi}\right].$

Thus, as $re^{i\theta} \rightarrow 1$, $\theta/(1-r) \rightarrow c \ge 0$,

$$\lim u_M(re^{i\theta}) = d(M) \left\lceil \frac{1}{2} + \frac{\tan^{-1} c}{\pi} \right\rceil.$$

Thus, for any homomorphism, h_c , in $S_{c,c}$ we have

$$u_M(h_c) = d(M) \left\lceil \frac{1}{2} + \frac{\tan^{-1} c}{\pi} \right\rceil.$$

If $h \in \mathfrak{B}^+$, it is the limit of homomorphisms h_c for which $c \to \infty$. Thus, because u_M is continuous we have, letting $c \to \infty$, $u_M(h) = d(M)$, as claimed.

PROOF OF 2.5. Let D = D(M), let $\epsilon > 0$, and pick $\theta_n \rightarrow 0$ such that

$$\frac{1}{2\theta_n}\int_0^{2\theta_n}\chi_M(e^{it})dt\geq D-\epsilon.$$

Then.

$$u_{M}(re^{i\theta_{n}}) \geq \int_{0}^{2\theta_{n}} P_{r}(\theta_{n} - t) \chi_{M}(e^{it}) dt$$

$$\geq 2 \int_{0}^{(D-\epsilon)\theta_{n}} P_{r}(\theta_{n} - t) dt = 2 \int_{(1-D+\epsilon)\theta_{n}}^{\theta_{n}} P_{r}(t) dt$$

$$= \frac{2}{\pi} \tan^{-1} \left\{ \frac{\frac{1+r}{1-r} \left(\tan \frac{\theta_{n}}{2} - \tan \frac{(1-D+\epsilon)\theta_{n}}{2} \right)}{1+\left(\frac{1+r}{1-r}\right)^{2} \tan \frac{\theta_{n}}{2} \tan \frac{(1-D+\epsilon)\theta_{n}}{2}} \right\}.$$

Let r_n be determined by $\theta_n = c(1-r_n)$. Then, the limit as $\theta_n \rightarrow 0$ of the numerator of the argument of \tan^{-1} in the last expression is $c(D-\epsilon)$, while that of the denominator is $1+c^2(1-D+\epsilon)$. Hence,

$$\lim_{\theta_n\to 0} u_M(r_n e^{i\theta_n}) \ge \frac{2}{\pi} \tan^{-1} \left\{ \frac{c(D-\epsilon)}{1+c^2(1-D+\epsilon)} \right\}.$$

This being true for every $\epsilon > 0$, we have

$$\lim_{\theta_n\to 0} u_M(r_n e^{i\theta_n}) \geq \frac{2}{\pi} \tan^{-1} \left\{ \frac{cD}{1+c^2(1-D)} \right\}.$$

In particular, if we choose $c = (1-D)^{-1/2}$,

$$\lim \sup u_{M}(re^{i\theta}) \geq \frac{2}{\pi} \tan^{-1} \left\{ \frac{D}{2\sqrt{(1-D)}} \right\}, \quad re^{i\theta} \to 1, \quad \theta = c(1-r).$$

This quantity is therefore a lower bound for $u_M(h)$ for some $h \in S_{c,c}$. Therefore, by Lemma 2.2 it is also a lower bound for $u_M(h)$ for some $h \in \mathbb{R}$. Since $u_M = 0$ on \mathbb{R}^- , it follows that for some homomorphism h in \mathbb{R}^+ ,

$$u_M(h) \ge \frac{2}{\pi} \tan^{-1} \left\{ \frac{D}{2\sqrt{1-D}} \right\}$$

as was to be proved.

If M is a measurable subset of C, we let $\widetilde{M} = \{h \in \mathfrak{D}_1 : \chi_M(h) = 1\}$. We recall that the range of $f \in L^{\infty}$ on \widetilde{M} is precisely the collection of essential cluster values of $f(e^{i\theta})$ as $e^{i\theta} \to 1$ through M. We also recall the result from [1] that for each $h \in \mathfrak{D}$, $\mu_h(\widetilde{M}) = u_M(h)$. With these preliminaries we may now prove

COROLLARY 2.6. Let M be a measurable subset of C⁺. Then, d(M) = 1 if and only if $\mu_h(\tilde{M}) = 1$ for every $h \in \mathbb{G}^+$.

PROOF. If d(M) = 1, we have from Lemma 2.4 that $u_M(h) = 1$. From the above remark it is immediate that $\mu_h(\tilde{M}) = 1$. On the other hand suppose d(M) < 1. Then, $D(\sim M) > 0$ and so by Lemma 2.5 there is an $h \in \mathbb{G}^+$ with

$$u_{\sim M}(h) \ge \frac{2}{\pi} \tan^{-1} \frac{D(\sim M)}{2\sqrt{(1-D(\sim M))}} > 0.$$

Since $u_{\sim M} + u_M = 1$, $u_M(h) < 1$ so $\mu_h(\tilde{M}) < 1$ for some $h \in \mathfrak{B}^+$.

3. Applications. It is now an easy matter to obtain several results connecting the one-sided behavior of an L^{∞} function on C at 1 with its boundary behavior at 1 from inside D.

A function f on C is approximately continuous from above at 1 with value α if for every $\epsilon > 0$, the density $d(\{e^{i\theta}: |f(e^{i\theta}) - \alpha| \le \epsilon, 0 \le \theta \le \pi\})$ equals one. The main theorem upon which the applications are based is

Theorem 3.1. Let $f \in L^{\infty}$. Then f is approximately continuous from above at 1 with value α if and only if f is identically α on the support of the representing measure of each upper barely tangential homomorphism.

PROOF. For each $\epsilon > 0$ let $M_{\epsilon} = \{e^{i\theta}: |f(e^{i\theta}) - \alpha| \le \epsilon, 0 \le \theta \le \pi\}$. Then, f is approximately continuous from above at 1 with value α if and only if $d(M_{\epsilon}) = 1$ for every $\epsilon > 0$ if and only if, by Corollary 2.6, $\mu_h(\tilde{M}_{\epsilon}) = 1$ for every $\epsilon > 0$ and every $h \in \mathbb{R}^+$. This latter statement implies that for each $h \in \mathbb{R}^+$, the support of μ_h is contained in \tilde{M}_{ϵ} for

every ϵ . But on \tilde{M}_{ϵ} , $|f(h)-\alpha| \leq \epsilon$. Thus for each $h \in \mathbb{G}^+$, f is identically α on the support of μ_h . On the other hand suppose for each $h \in \mathbb{G}^+$ that $f = \alpha$ on the support of μ_h . Then, since $|f-\alpha| \geq \epsilon$ on $(C-M_{\epsilon})^{\sim}$ it must be that the support of μ_h is entirely contained in \tilde{M}_{ϵ} , i.e., $\mu_h(\tilde{M}_{\epsilon}) = 1$. This completes the chain of implications and the theorem follows.

The next theorem is a generalization to L^{∞} functions of a result of Tanaka [6, Theorem 5], for H^{∞} . By this time our proof is a considerable simplification of that given by Tanaka.

Theorem 3.2. Let $f \in L^{\infty}$. Then, necessary and sufficient conditions for f to be approximately continuous from above at 1 with value α are

(i) $f(h) = \alpha$ for all $h \in \mathbb{G}^+$. (ii) The set, $\{e^{i\theta}: |f(e^{i\theta})| \le |\alpha| + \epsilon\}$, has density 1 at 1 from above for every $\epsilon > 0$.

Note. In Tanaka's theorem condition (i) was the statement that f tends to α radially. From Lemma 2.2 we see that this is equivalent to our (i) for H^{∞} functions.

PROOF. First suppose f is approximately continuous from above at 1 with value α . By Theorem 3.1, $f = \alpha$ on the support of the representing measure for each $h \in \mathbb{G}^+$. Immediately, $f = \alpha$ on \mathbb{G}^+ . Condition (ii) is necessary because

$$\{e^{i\theta}\colon |f(e^{i\theta}) - \alpha| \le \epsilon\} \subset \{e^{i\theta}\colon |f(e^{i\theta})| \le |\alpha| + \epsilon\}.$$

Next, suppose the conditions (i) and (ii) are satisfied. Let $N_{\epsilon} = \{e^{i\theta}: |f(e^{i\theta})| \leq |\alpha| + \epsilon\}$. By Corollary 2.6 and condition (ii), \tilde{N}_{ϵ} contains the support of the representing measure of each upper barely tangential homomorphism for every $\epsilon > 0$. Thus, for every $\epsilon > 0$ we have $|f| \leq |\alpha| + \epsilon$ on each such support. Thus, $|f| \leq |\alpha|$ on each such support. By condition (i) if $h \in \mathbb{G}^+$, then $f(h) = \alpha$. But, f(h) is the integral average of values not exceeding α . Therefore, f must be identically α on the support of μ_h . By Theorem 3.1, again, f is approximately continuous from above at 1 with value α .

That condition (i) is necessary is a Lindelöf-type theorem for L^{∞} . Using Lemma 2.3 we state this theorem more concretely. It should be noted that because of Lemma 2.2 this theorem generalizes the usual Lindelöf theorem for H^{∞} : If $f \in H^{\infty}$ and is approximately continuous from above at 1 with value α , then f tends to α radially.

THEOREM 3.3. Let $f \in L^{\infty}$. If f is approximately continuous from above at 1 with value α , then the upper barely tangential cluster set of f at 1 consists of the single point α .

REFERENCES

- 1. T. Boehme, M. Rosenfeld and M. L. Weiss, Relations between bounded analytic functions and their boundary functions, J. London Math. Soc. (2) 1 (1969), 609-618.
- 2. L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962). 547-559. MR 25 #5186.
- 3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962, MR 24 #A2844.
- 4. ——, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74-111. MR 35 #5945.
- 5. M. Rosenfeld and M. L. Weiss, A function algebra approach to a theorem of Lindelöf, J. London Math. Soc. (2) 2 (1970).
- 6. C. Tanaka, On the metric cluster values of the bounded regular function in the unit disk, Mem. School Sci. Engrg., Waseda Univ., Tokyo, No. 31 (1967), 119-129.

University of California, Santa Barbara, California 93106