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ONE-SIDED BOUNDARY BEHAVIOR FOR
CERTAIN HARMONIC FUNCTIONS

T. K. BOEHME AND MAX L. WEISS1

Abstract. Some results concerning the maximal ideal space

of H" of the disk are applied to harmonic functions. The methods

yield a Lindelöf type theorem for harmonic functions and extend

to bounded harmonic functions a criterion of Tanaka which is

necessary and sufficient in order that the boundary value function

be one-sided approximately continuous.

1. Introduction. We are concerned in this paper with connections

between the one-sided behavior of an L°° function at a point of the

unit circle, C={z:|z|=lJ, and the boundary behavior of the har-

monic extension of the function into the unit disc, £>={z:|z|<l}.

Our techniques consist mainly of combining certain concrete esti-

mates for harmonic measures with some facts about the Banach alge-

bra, //°°, of bounded analytic functions on D. We assume for this

latter area that the reader is familiar with the contents of Chapter 10

of Hoffman's book, [3], and with [4] and [5].

The main focal point is the introduction of a class of homomor-

phisms in the maximal ideal space of H°° which we call the "barely

tangential homomorphisms." These homomorphisms play a role for

the one-sided boundary behavior of L°° functions similar to that

played by the radial homomorphisms for two-sided behavior in [l].

§2 is mainly devoted to an intrinsic study of the barely tangential

homomorphisms. In §3 we obtain a theorem (Theorem 3.1) charac-

terizing one-sided approximate continuity from above of an L°° func-

tion in terms of the behavior of the function on the supports of the

representing measures of upper barely tangential homomorphisms.

Subsequently, we easily obtain a result of Tanaka [6, Theorem 5]

characterizing one-sided approximate continuity. As a final result

we prove a "Lindelöf-type theorem" for L" functions.

2. Barely tangential homomorphisms. We first recall that the col-

lection, H°°, of bounded analytic functions on D forms a function

algebra with pointwise operations and the supremum norm. Its

maximal ideal space, 2D, is a compactification of D, [3]. Every homo-

morphism in 2D can be approached by a universal net in D or by one
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in any dense subset of D. One can also represent Hx as a subalgebra

of the Banach algebra, Z°°, of all bounded measurable functions on C.

We rely on the references for a complete description of these connec-

tions. We remark here that for any Z°° function /on C we will con-

tinue to denote as "/" any of the standard representations of/ on D,

3), or C.

For simplicity we restrict our attention to the fiber, 35i, above 1, i.e.,

those homomorphisms which are approached by nets tending to 1.

From here on out we will simply assume phrases such as, "at 1." The

collection, S, of such homomorphisms which are approached within

a Stolz angle are called the Stolz homomorphisms. In [5] the w*-

closure, Sr=£, of the Stolz homomorphisms is called the Lindelöf

homomorphisms.

Definition 2.1. Let S and £ be the Stolz and Lindelöf homomor-

phisms, respectively. Then, the collection, 03 = £ — S, is called the barely

tangential homomorphisms. Those points, 03+ [ffi-], of 03 which are

approached by nets tending to 1 tangentially from above [below] are

termed the upper [lower] barely tangential homomorphisms.

Our first result shows a relationship between (B and £ which we

shall use once in §3. We recall that for any function algebra, A, on a

compact Hausdorff space X, each point hEX has a representing mea-

sure, ph, spread on the Silov boundary of A.

Lemma 2.2. Let A denote the restriction algebra of Hx to the Lindelöf

homomorphisms, £. Then, the Silov boundary of A is contained in the

barely tangential homomorphisms, (B. If h is a Stolz homomorphism,

then for any representing measure nh we have ptn(($>+) > 0 and Hh((£>~) > 0.

In particular, iffEH", then f has radial limit a if and only if f is con-

stantly a on 03+ (or on o3~).

Proof. We show that no Stolz homomorphism is contained in the

Silov boundary. Let hE§- Since by [5, §3] S is open in £>i and since

(B is compact there is a neighborhood N oí h such that iVCS and

NH\(S> = 0. Now, suppose/GZ7°° and/peaks on N, i.e., \f(h)\ =||/||£
for some hiEN. Choose some Gleason part, P, of 3D which contains

such a point in N. Using the results of [5, (especially §6) ] we see that

PCS and P~r\(S,9i0. Since the restriction of / to P is analytic and

achieves its maximum modulus on P it is constant. Thus/ peaks at

some point of P~C\<B. Consequently, we have shown that/peaks out-

side N. Therefore, h cannot be in the Silov boundary and the latter

is contained in 03.

Next, let ÄGS and let ßn be a representing measure. Let u be the

harmonic measure of C+= {ei9:O^0^7r}. Let »bea harmonic con-
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jugate and let f=exp(u-\-iv). Then |/| =e on (B+, |/| =1 on (S>~

and 1<|/| <e on £. If ph((n+)=0, then we would have \f(h)\ ^1
which is impossible. Thus Ph((&+) >0, and similarly juä((B_) >0.

Finally, suppose /£//". If / has radial limit a, then / has Stolz

limit a and thus/ = a on S. Consequently, by continuity/ = a on 03+

(or (B-). Conversely, suppose /=a on (B+ (or (B-). Let ph be a Jensen

measure for hES- Then,

log | /(A) -<*\ £ f        log | / - « | dph.
¥ (B+U(B

Since ¿iA((B+)>0 and/—a = 0 on (B+, the integral above equals — »

and so f(h) =a. Thus,/=a on S and a fortiori f tends to a radially.

In order to avoid exactly similar cases we now concentrate entirely

on the upper barely tangential homomorphisms.

We next define a cluster set which will allow us to state more con-

cretely Theorem 3.3 in §3. Each Stolz angle approach can be written

as 0 = c(l—r) and as c increases the approach tends more and more

toward an upper tangential approach. Given d^c we denote by S<¿,c

the collection of all homomorphisms in 2Di which are approached by

nets corresponding to all Stolz angle approaches, a, such that d^a^c.

Given fELœ define 5<¡,c(/, 1) as the collection of all cluster values of

f(rea) as rei$-+l and d^lim inf 0/(l-r)^lim sup d/(l-r)^c. It is

not hard to see that we then have Sd,c(f, l)=/[Sd,c]. Now, define

B+(f, 1), the upper barely tangential cluster set of / at 1 by

B+(f, i) = n I" u s„,(/, i)l .
d>oLc>0 J

Lemma 2.3. LetjEL°°. Then, B+(f, 1) =/[«+].

Proof. Suppose h0E(&+. Then, there is a net haE& such that

ha—>ho. Clearly, for each d^O, ha is eventually in UCïo §<*.<;• Thus,

hoEC\dio [Ucao Sd,c]~. On the other hand suppose ÄoEfidäo [Ucïo Sd,c]~.

Then, for each ¿SïO, h0E [Ucao §<i,c]_- Since [UCä;o S,*,,,]- — 8 = 03+ for

each d, h0E(&+. Therefore,

r 1~œ+ = n   u &..  .
«¡ä0 LcäO J

Since the intersection is over a nested system of compact sets and

since / is continuous on 20 we have

/[<b+] = nTu/is*..]] =^(/,i).
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Given a measurable subset, M, of the circle, C, we let um denote

the harmonic measure of C,

1   r*

2~JJ
1

«m (re*) = — I    Xii(eil)-dt
ItJ-, 1 - 2r cos(0 - t) + r2

where xm is the characteristic function of M. If M is a subset of the

upper portion of the unit circle, C+= {ei9:O^0^7r}, we let

d(M) = lim inf— I   xu(eu)dt,       D(M) = lim sup— I   xii(eu)dt
»-Ki+    6 J o e-<o+      8 J o

denote the lower and upper densities of M at 1 from above.

Our basic results rely heavily on the following estimates for har-

monic measures.

Lemma 2.4. Let M be a measurable subset of C+. If d(M) =D(M),

then for every hE<$>+, uM(h) =d(M).

Lemma 2.5. Let M be a measurable subset of C+. Then, there exists an

ÄG03+ with

2 D(M)
Uid(h) è — tan-1-

Tr 2V(1 - D(M))

Proof of 2.4. Let e > 0 and choose 0 <0O <tt/2 so that, for 0 g0 g0O,

d(M) - e < — f XM(eu)dt g d(M) + e.
6 Jo

Since the harmonic measure of M(~\[6o, it] tends to zero as 2—»1 we

have, as 2—>1,

uM(re») = o(l) + — f °Pr(6 - t)Xu(eit)dt
2irJ o

where Pr(t) is the Poisson kernel. Integrating by parts we have

1   r " Pr(6 - Oo) rH
— I    Pr(0 - i)xu(eu)dl =-I    Xu(ei')ds
2ir J o 2ic        •/ o

1    /» »o ft
+ — I     Pi (6 - 0       xu(eu)ds dt.

2ir J o J o

Thus, as 2—>1,

uM (re«) = o(l) + — f °P; (0-0  f xu(ei')ds dt.
2t Jo " o
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For Og¿^0<7r/2, Pr'(0-í)^Oso

(d(M) + t)tP; (í-f)á P¡ (0-t) f xM(eu)ds á (d(M) -t)tP'r (6-1);
J o

while, for0â<g0o, P¿(6-t)^0so

(d(M) - e)tP; (9-t)£ Pi (0-0  f  xu(ei')ds ̂  (d(M) +e)tPÍ (6-1).
J o

Therefore,

íi+í r9 d(M) -é r'°
í)¿¿

d(M)+t r" d(M) -e f e«
o(l) -1 — I   tPf (0 - í)á< + -±-i- I    «V (0 - t)d

J o 2ir       J s2t

S uM(rew)

d(M) + e   f '»d(M) -e f ' d(M) + e   f 9°
^ o(l) + —- I   //>„' (0 - t)dt + —- í     tPi (8 - t)dt.

2ir       J o 27T       J %

Now,

f» -(l+r)0 (1 + r 0)
J    ¿P; (0 - t)dt = —-h 2 tan-1 ^-tan — } ,

■/o 1 — r (1 — r 2 J

CH (l+r)0 (1 + r 00-0)
I     tPi (6 - t)dt = o(l) +-— + 2 tan-1 {-tan->

J í 1 — r ll — r 2    )6 L — T \L  — r 2

so that if rew—>1 in such a way that 0/(1—r)—>c^0, we have

■c
(d(M) +e)

tan-1 cl r c        1 "I
+ —] + ««>-,)[- + T]

^ lim inf UM(rea) ^ lim sup uM(rea)

' — c      tan-1 c"
^ (d(M)

V — c      tan-1 c"l
-e)    — +-

L   7T 7T        J
+ (d(M) + £)

.7r 2 J

Since this is true for every e>0, we have as re''—»1, 0/(1 — r)-+c^0,

d(M)
' 1       tan-1 cl

.7 + ~J
r 1       tan-1 c"|

¿ lim inf uM(retS) ^ lim sup «¿/(re*') á ¿(M)-1-.

Thus, as re'''-»l, 0/(l-r)^c^O,
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r 1       tan"1 c~\
lim uM(reie) = d(M)-1-.
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Thus, for any homomorphism, hc, in Sc,c we have

um (hc) = d(M)
r 1       tan-1 c
\-+-
L2 7T

If AG03+, it is the limit of homomorphisms hc for which c—>». Thus,

because um is continuous we have, letting c—><*>, umQi) =d(M), as

claimed.
Proof of 2.5. Let D = D(M), let e>0, and pick 0„—>0 such that

XM(eu)dt ^ D
a20« •> o

Then,

/' 2«»n

Pr(On  - l)XM(eil)dt

/< (X>-«)0n /• 9n
Pr(0„ - t)dt = 2 I PT(t)dt

0 J (l-Z>+<)0„

= — tan"1
7T

1 + r/

1 - r\
tan ■-tan

2

(1 - D + e)0n)   I
/l + r\*        0n

1 + (-)  tan —
\i-rj 2

tan
(1 - D + t)6n

Let r„ be determined by 0„ = e(l — rn). Then, the limit as 0„—»0 of the

numerator of the argument of tan-1 in the last expression is c(D— e),

while that of the denominator is l+c2(l— Z>+e). Hence,

2 Í       c(D - e)        )
lim sup UM(rneien) S: — tan-1 <-> .

*„V T \l+c2(l- D + e)f

This being true for every é > 0, we have

2 ( cD •)
lim sup uM(rnea") è — tan"1 -{—■— > .

6„-0 7T U  + CZ(1   —   Z>);

In particular, if we choose e = (l— D)~1,!!,

2 í        Z>        Ï
lim sup UM(reu) ^ — tan""1 <->

F 7T W(l-Z))j
re«-»!,    0 = c(l - r).
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This quantity is therefore a lower bound for uu(h) for some hE&cc

Therefore, by Lemma 2.2 it is also a lower bound for UmQÍ) for some

&G03. Since ««=0 on 03_, it follows that for some homomorphism h

in 03+,

2
umQi) à — tan"

ir W(l - D)f

as was to be proved.

If If is a measurable subset of C, we let M= {hES>i'-XM(h) = 1}.

We recall that the range of fEL°° on .Ï/ is precisely the collection of

essential cluster values of f(eiB) as eie—>1 through ÜZ. We also recall

the result from [l] that for each ÄG33, uh(M)=uM(h). With these

preliminaries we may now prove

Corollary 2.6. Let M be a measurable subset of C+. Then, d(M) = 1

if and only if Uh(M) = 1 for every hE<$>+-

Proof. If d(M) =1, we have from Lemma 2.4 that uM(h) =1. From

the above remark it is immediate that Hh(M) = 1. On the other hand

suppose d(M)<\. Then, Z>(~Af)>0 and so by Lemma 2.5 there is

an hE®>+ with

2 Z>(~M)
u^m(Ii) â — tan-1-> 0.

2V(1 - D(~M))

Since u~m+um = 1, uM(h)<l so pth(M) <I for some hE03+.

3. Applications. It is now an easy matter to obtain several results

connecting the one-sided behavior of an Z* function on C at 1 with

its boundary behavior at 1 from inside D.

A function / on C is approximately continuous from above at 1 with

value a if for every e>0, the density d({ea: \f(ei6)—a\ ^e, O^0^7r})

equals one. The main theorem upon which the applications are based

is

Theorem 3.1. Let fEL°°. Then f is approximately continuous from

above at 1 with value a if and only iff is identically a on the support of

the representing measure of each upper barely tangential homomorphism.

Proof. For each e>0 let M< = {e*'»: | f(eu) -a\ ^e, 0úQSir}. Then,

f is approximately continuous from above at 1 with value a if and

only if d(Me) = l for every e>0 if and only if, by Corollary 2.6,

Hh(Mt) = 1 for every e>0 and every ÄG63+. This latter statement im-

plies that for each hE<$>+, the support of ma is contained in Mt for
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every e. But on Mt, \f(h)—a\ ^e. Thus for each hE<$>+, f is identi-

cally a on the support of ph- On the other hand suppose for each

A£(B+ that f=a on the support of pn- Then, since |/—a| èe on

(C— M,)~ it must be that the support of ph is entirely contained in

Me, i.e., ph(M.) =1. This completes the chain of implications and the

theorem follows.

The next theorem is a generalization to Lx functions of a result of

Tanaka [6, Theorem 5], for H°°. By this time our proof is a consider-

able simplification of that given by Tanaka.

Theorem 3.2. Let fEL™. Then, necessary and sufficient conditions

for f to be approximately continuous from above at 1 with value a are

(i) f(h)=aforallhE<S,+.
(ii) The set, {eiS: |/(e<9)| ^ \a\ +e}, has density 1 ai 1 from above

for every e>0.

Note. In Tanaka's theorem condition (i) was the statement that/

tends to a radially. From Lemma 2.2 we see that this is equivalent to

our (i) for Z/00 functions.

Proof. First suppose / is approximately continuous from above

at 1 with value a. By Theorem 3.1, f=a on the support of the repre-

senting measure for each A£(B+. Immediately, f = a on (B+. Condition

(ii) is necessary because

{«*»: \f(e«) - a\  á e} C {e*: |/(e«'»)|   Ú   \a\   + e}.

Next, suppose the conditions (i) and (ii) are satisfied. Let N,

= {e*»:|/(e")| ^\a\ +«}. By Corollary 2.6 and condition (ii), Ñ(

contains the support of the representing measure of each upper

barely tangential homomorphism for every e>0. Thus, for every

«>0 we have |/| g \a\ +e on each such support. Thus, |/| á|a| on

each such support. By condition (i) if hE<&+, then/(A) =a. But, /(A)

is the integral average of values not exceeding a. Therefore, / must

be identically a on the support of ph. By Theorem 3.1, again, / is

approximately continuous from above at 1 with value a.

That condition (i) is necessary is a Lindelof-type theorem for Va.

Using Lemma 2.3 we state this theorem more concretely. It should

be noted that because of Lemma 2.2 this theorem generalizes the

usual Lindelöf theorem for //°°: If fEH°° and is approximately con-

tinuous from above at 1 with value a, then/ tends to a radially.

Theorem 3.3. Let fELM. If f is approximately continuous from

above at 1 with value a, then the upper barely tangential cluster set of f

at 1 consists of the single point a.
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