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ON TWO PARAMETER SINGULAR PERTURBATION OF
LINEAR BOUNDARY VALUE PROBLEMS

W. M. GREENLEE1

Abstract. A two parameter perturbation estimate for solutions

of a functional equation in Hubert space is derived. The estimate

is applied to two parameter singular perturbation of elliptic

boundary value problems with homogeneous Dirichlet boundary

data.

1. Consider the boundary value problem

tAu + fiCu + Bu = f m /,,„

for 0<t^eo and O^ju^^o, where A and B are linear elliptic differen-

tial operators of respective orders 2m' > 2m over a bounded domain

D; and C is a linear differential operator of order ^ 2m'. The solution

u of the above equation is to be compared with the solution u0 of

Buo=fo where f—*fo as e | 0 and n J, 0. In particular, bounds of the

form |«— Uo\m,D=o(eT)+o(p") in the Bessel potential space Pm(D)

will be derived, assuming a like bound for the P~m(D) norm oif—fo.

For the one parameter problem obtained by setting C = 0 above,

corresponding bounds have been obtained by Friedman [4], Green-

lee [5] and Huet [8], [ö]. Extensive studies in multiparameter singu-

lar perturbation theory have been carried out by O'Malley, cf. [12].

In Greenlee [ó] a two parameter perturbation problem analogous to

the above, but with C a quasilinear differential operator of order

^¡2m, was considered.

In this paper a perturbation theorem for a functional equation in

abstract Hubert space is proven. The theorem is then applied to

differential problems of the type described above. The notation and

methods of this paper are similar to those used in [5] and [6].

2. Let V and V0 be complex Hubert spaces with VEcV0, and V

dense in V0. Denote by |»|vi (v, w)v, \v\ o the norms and inner prod-

ucts in V and V0 respectively. Let a(v, w), c(v, w) be continuous

Hermitian bilinear (sesquilinear) forms on V and let b(v, w) be a

continuous Hermitian bilinear form on Fo. Further assume that:
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(1) there exists ß>0 such that \b(v, v)\ ^ß\v\l for all vEV<>; and,

(2) for 0<e^€o and O^M=Mo there exist a(e, p)>0 such that

a(e, p)—>0 as e | 0 and 5>0 such that

I ea(v, v) + fic(v, v) + b(v, v) | ^ a(e, p) | v \v + 5 \ v |o    for all v E V.

According to a theorem of Hausdorff (cf. Aronszajn [3]) the in-

equality in (2) holds if and only if there is an angle \j/=\p(t, p) such

that

Re{e   [ta(v, v) + pc(v, v) + b(v, v)]} ^ a(e, p) \ v \r + 5 | v \a.

The dependence of the angle fon e and p does not seem easy to

analyze. Simpler conditions implying (1) and the inequality in (2)

are (cf. Huet [7, Theorem 1.4]) the existence of a fixed angle <¡> such

that

(i) Re(e**b(v, v))^ß\v\20,

(ii) Re(e''*c(o, i/))^0, and

(iii) Re{e^ltaiv, v) +b(v, v)]} ^k(e)\v\2v, k(e)>0.
For differential problems (i) and (iii) are strong Gârding type in-

equalities.

Let V* be the antidual of VQ, and let Lt¡lí = L, 0<eáe0, Q^p^po,

and Lo be given in V*. It follows from the Lax-Milgram lemma that

the equation

(3) b(u0, v) = Lo(v)    for all v E Fo

has a unique solution uoE Fo. Similarly denote by x the unique solu-

tion in V of

(4) ea(x, v) + pc(x, v) + b(x, v) = L0(v)    for all v E V,

and by u the unique solution in V of

(5) ta(u, v) + pc(u, v) + b(u, v) = L(v)    for all v E V.

In each of (4), (5) it is assumed that 0 <e geo and 0 ^p ^po-

As in [5, p. 142], let d be the operator in F0 associated with a(v, w)

relative to b(v, w), i.e., Ct is defined by b(&v, w) =a(v, w) for all wE V

on D((x) = {vEV:w^>a(v, w) is continuous on V in the topology of

F0}. d is a closed densely defined operator in F0 (cf. [5, Propo-

sition 2.1]). Moreover, D((x), provided with the graph norm

(|»|u+| ûd|o)1/2, isa Hubert space, Fi, which is dense in F and whose

norm and inner product will be denoted by | »| i, (v, w)i, respectively.
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The interpolation spaces by quadratic interpolation between Vi and

Fo will be denoted by VT, O^r^l, (cf. Lions [lO]) with norm \v\T.

Now let C be the operator in V0 associated with c(v, w) relative to

b(v, w) and assume that

(6) D(C)DD(a), and
(7) there is a y E [0, 1 ] and k > 0 such that

| Cv |0 g k | v \y    for all v E Vi = D(Q).

It follows from (6) that for eG(0, e0] and uE [0, u0], td+ßC+I is the

operator in Fo associated with ea(v, w)+uc(v, w)+b(v, w) relative to

b(v, w). Furthermore, td-\-¡xC-\-I is a closed operator in Fo which is

a topological isomorphism of its domain, D(&), onto Fo-

For a real valued function g(e, u) the notation g(e, fi) =o(é)+0(;u)

will signify that | g\ is dominated by the sum of a function of e which

is o(e) as e J, 0 and a function of u which is 0(fi) as n j, 0. Then the

following rate of convergence theorem describes the behavior of u

(and x) as e j 0 and ¡x J, 0.

Theorem. Assume hypotheses (1), (2), (6), (7) and let u0, u be the

solutions of (3), (5) respectively. Then one has:

(i) if uoEVi = D(Ot) and \\L — Lo\\=0(e)+O(fi), then \u — w0|o

= 0(e)+0(n);
(ii) if yE [0, 1) and for fixed tE [y, 1), «oG FT awd |¡L —L0|| =o(eT)

+ 0(fi), then |m—M0| o=o(er)+0(/i);

(iii) if for fixed tG[0, 7), »£F, and \\L— L0\\ =o(eT)+o(uTly),

then \u—Uo\o = o(6T)+o(pTl"1).

Proof. Subtraction of (4) from (5) yields

ea(u — x, v) + pc(u — x, v) + b(u — x, v) — (L — L0)(v)

for all vEV. By letting v=u— x it follows from (2) that

a(t, n) I u — x \v + 8 I u — x [o á ¡¡L — Z0|| • I M — x I o-

Hence \u— x\ oá(l/S)||Z — Z0||, and so

(8) I m - «o |o ^ (1/5)||Z - Z0|| + I x - », |0.

It is thus sufficient to prove that (i)-(iii) hold with u replaced by x.

For this purpose observe that by (4), (6) and the definitions of Ö

and C, x is the unique solution in Vi=D(&) of

(9) (eft + pC + I)x = uo.

Now with A = a*a+J and 5=A1'2,  (eS+ßS^+I)-1 is a bounded
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linear operator on F0. Let y be the unique solution in D(S) =D(Ct) of

(10) (eS + nSi + l)y = «o.

An estimate of the form

| x — «o | o á (constant) | y — «o | o,        « G (0, e0],   p E [0, p0],

will now be derived.

First observe that by (2) and (6), if M is a bound for b(v, w) then

(11) \(ea + pC +I)-h\0^(M/5)\v\o,       vEVo.

Also, by the definitions of ß and 5,

(12) I.OS-M,^ Mo,       ^GFo,

and it follows from (7) that (since \v\ y= | Syv\ 0)

(13) \CS-iv\oe k\v\0,        vEVo.

Now, (9) implies that

x = u0 — (eâ + pC)(ea + pC + I)~lu0

and by (10)

y = Uo-(eS + pS^)(eS + pS^ + I)~lu0,

so

x-u0 = (ea+pC)(ea-r-pC-r-I)-l(eS+ßS-'+I)(eS+pS->)-1(y-Uo)-

Thus, using (11)—(13),

|l*-«o|o^ \(ta+pC)(ta+pC-\-i)-1(y-uo) \o

+ |(ea+/iC)(ía+MC+/)-1(6S+/^1r)-1(y-«o) |o

= | y—«o— (ea-r-pC+I)'^—«o) |o

+ \(fa+pC+i)-1(ea+pC)((s+pSy)-1(y-u0) |,

(14) £[l + (M/6)] I y-Uo\o+(eM/o) \ OS-^el+pSv-TKy-Uo) |o

+ 0*if/i) | CS-^e^^+M^-Kr-Mo) |o

ú[l + (M/S)] | V-Mo|o+(eM/S) |(e/+^-t)-i(T_„0) |0

+(pkM/ô) \(eSl-v+pi)-Ky-uo) \o

è[l + (k+2)M/ô]\y-Uo\B.

It remains to estimate \y — Wo| o- Let UoEVT with tG[0, l] and let

E be the resolution of the identity for the selfadjoint operator 5. Then
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y — «o ¡o =  | [(eS + tiS   + /)     — l]u0

(eX + /*X*)"X
o     (eX + u\-> + l)2

(E(dX)u0, Uo)o

(eX)2"2'
X2r-(E(d\)u0, «o)o

(eX + l)2"2'
^ 2e2' r

•^ o

f M /I2X2T

Jo    (mX^+1)2

Now MoG FT = Z)(5r) if and only if fô X2t(£(¿X)m0, Mo)o< °° • So by

Lebesgue's dominated convergence theorem, the first term on the

right-hand side is 0(e2) if r = l and o(e2r) if t<1, and if r^y the

second term is 0(¡x2). If 0¿t<7 the second term on the right-hand

side is dominated by

/•» (uX"K)(27_2r)/T
X2-    x     L   ,.„      - (Z(áX)M„, «o)o

o (mXt + l)"?-2*"?

which is o(jx2Tly). The theorem follows from (8), (14), and these esti-

mates.

Observe that an explicit estimate for \u— uo\o in terms of given

parameters, |«o|t, and |«o|7 is obtainable from the proof of the

theorem.

3. The preceding theorem will now be applied to singular perturba-

tion of elliptic boundary value problems with homogeneous Dirichlet

boundary conditions. The terminology of the theory of Bessel poten-

tials will be used (cf. Aronszajn and Smith [2], and Adams, Aronszajn

and Smith [l]).

Let m'^l>m be nonnegative integers and let DER" be a bounded

domain of class C2m'. Recall that for such domains and any a^O the

Bessel potential spaces Pa(D) and Pa(D) coincide up to equivalent

norms (cf. [l]). Denote the closure of C0"(Z») inPa(D) by PÔ(D) and

the antidual of PÔ(D) by P~a(D). P~a(D) can be realized as a space

of distributions on D. For v, wEPo'(D)< let

a(v, w) =     ¿2      I   ai,(x)DjvDiWdx
lil.lilsm'  J D

with a.yGCi'i(ö) and

c(v, w) =     ¿1      I  dj(x)DjvDiwdx
KI.IJl«!  J D
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with djEO^(D). For », wEPo(D), let

b(v, w) =   2       I bij(x)DpDiwdx
\i\.\i\SmJ D

with bijEC^(D).
Let /«,M=/, foEP~m(D) and let |»|a.B, (^, w)D).d denote the norm

and inner product in Pa(D) respectively. Let V = P%'(D), V0 = Pott(D)

and assume that (1) and (2) hold. It follows that there is a unique

solution uEPÍ(D) of

ea(u, v) + pc(u, v) + b(u, v) = (/, v)-m,D = L(v),        vEP^'(D),

and a unique solution u0EPS(D) of

b(u0, v) m (/„, »)_m,D = £„(„),        tGi?(5).

According to [5, Proposition 6.1 and Theorem 6.2], Vi = D(&)

is P2m'-m(D)n\F¡¡(D) with an equivalent norm and, for 0^t<

\/A(m'-m), Vr is Pm+2lm'-m)T(D)r\PÔ(D) with an equivalent norm.

Similarly, D(C)DP2l-m(D)nP'0(D) and C maps P*«—(Z^nPiiZ?)

into Pq(D) continuously. Thus (6) is satisfied and so is (7) with

y=(l-m)/(m'-m). Moreover, for any 0G[O, 1/2), ii ftlEP-m+9(D)

then u<¡EPm+e(D)r\P'S(D) (cf. Lions and Magenes [ll]). Hence it

follows from the above theorem that if 0G[O, 1/2), ft¡EP~m+e(D),

and |/-/o|-»,i) = o(ee/2('»'-m>)-r-o(M9/2(i-m)). then

| u - mo|™.b = o(<?i2(-m'-m)) + o(Me/2(i-m)).

The theorem also applies to other differential problems with

smooth boundary conditions for which the conditions (6) and (7) are

satisfied.
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