ALMOST PERIODICITY OF THE INVERSE OF A FUNDAMENTAL MATRIX¹

A. M. FINK

ABSTRACT. We show that if X is the fundamental solution to X' = AX + XB with X, A, and B almost periodic $n \times n$ matrices, then X^{-1} is almost periodic.

We prove the

THEOREM. If X is the fundamental solution to X' = AX + XB with X, A, and B almost periodic $n \times n$ matrices, then X^{-1} is almost periodic.

This is apparently new even if A or B is the zero matrix. The equation is of extreme importance in the theory of stability since the transformation Y = XZ maps the equation Y' = AY into Z' = -BZ. It is useful to known that X^{-1} is bounded if X is. In particular, when X is almost periodic, then our theorem shows that X^{-1} is bounded. See Lillo [4] for applications. The fundamental solution is the solution such that X(0) = I.

The general result may be reduced to the scalar case in the following way. Since $X^{-1} = (\det X)^{-1}(\operatorname{adjoint} X)^T$ it is easily seen that X^{-1} is almost periodic if and only if $(\det X)^{-1}$ is almost periodic. Now it is well known that if Y' = AY, Y(0) = I then $y = \det(Y)$ satisfies $y' = (\operatorname{trace} A)y$, y(0) = 1. Similarly if Z' = ZB, Z(0) = I, then $Z = \det(Z)$ satisfies $z' = (\operatorname{trace} B)z$, z(0) = 1. Now it is easy to check that X = YZ satisfies X' = AX + XB, X(0) = I and that $x = \det(X)$ satisfies $x' = [\operatorname{trace}(A + B)]x$, x(0) = 1. Consequently the theorem follows from the following lemma whose proof is contained in Bochner [1].

LEMMA. Let y be a nontrivial scalar almost periodic solution to the almost periodic equation y' = p(t)y. Then $\inf |y| > 0$ and y^{-1} is almost periodic.

If the result does not hold, let $\lim_n y(t_n) = 0$. By the almost periodicity of p and y we can find a subsequence s_n of t_n such that

$$\lim y(t+s_n) = z(t)$$
 and $\lim_{n} p(t+s_n) = q(t)$

Received by the editors May 22, 1970.

AMS 1969 subject classifications. Primary 3445; Secondary 3451.

Key words and phrases. Fundamental solution, almost periodic.

¹ This research was supported in part by the National Science Foundation under GP 11623.

528 A. M. FINK

exist uniformly on the real line. Then z'=qz and z(0)=0. Hence z(t)=0 for all t and $y(t)=\lim_n z(t-s_n)=0$ for all t. So it must be that $\inf |y|>0$. Hence y^{-1} is almost periodic.

It follows that $\int_0^t \operatorname{trace}(A+B)$ must be almost periodic if the fundamental solution of X' = AX + XB is to be almost periodic in the real case. If A and B are complex, then

$$\int_{0}^{t} \operatorname{trace}(A + B) = iat + \text{ an almost periodic function, with } a \text{ real.}$$

This necessary condition, which seems to be new, has appeared as one of several sufficient conditions for the existence of an almost periodic vector solution, see e.g. [2]. See also Langenhop [3] for a related result if B is constant and X and X^{-1} are only required to be continuous and bounded.

BIBLIOGRAPHY

- 1. S. Bochner, Remark on the integration of almost periodic functions, J. London Math. Soc 8 (1933), 250-254.
- 2. ——, Homogeneous systems of differential equations with almost periodic coefficients, J. London Math. Soc. 8 (1933), 283-288.
- 3. C. E. Langenhop, On bounded matrices and kinematic similarity, Trans. Amer. Math. Soc. 97 (1960), 317-326. MR 22 #5788.
- 4. J. C. Lillo, Approximate similarity and almost periodic matrices, Proc. Amer. Math. Soc. 12 (1961), 400-407. MR 23 #A2433.

IOWA STATE UNIVERSITY, AMES, IOWA 50010

University of Colorado, Boulder, Colorado 80302