SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

SUBMANIFOLDS IN A EUCLIDEAN HYPERSPHERE

BANG-YEN CHEN

ABSTRACT. Let M be an oriented closed n-dimensional submanifold of a euclidean (n+N)-space E^{n+N} . Let X and H be the position vector field and the mean curvature vector field of M in E^{n+N} . Then M is contained in a hypersphere of E^{n+N} centered at \mathbf{c} when and only when either $(X-\mathbf{c}) \cdot H \ge -1$ or $(X-\mathbf{c}) \cdot H \le -1$.

Let M be an oriented closed n-dimensional submanifold of a euclidean space E^{n+N} of dimension n+N, and let X be the position vector field of M in E^{n+N} . Then M is a riemannian manifold with the induced metric. In the following, let ∇ and ∇' be the covariant differentiations of M and E^{n+N} , respectively. Let u and v be two tangent vector fields on M. Then the Gauss formula gives

(1)
$$\nabla'_{u}v = \nabla_{u}v + \alpha(u, v),$$

where $\alpha(u, v)$ is the second fundamental form of M. If $\{e_1, \dots, e_n\}$ is an orthonormal basis in the tangent space $T_x(M)$, then the normal vector

(2)
$$H = (1/n) \sum_{i=1}^{n} \alpha(\mathbf{e}_i, \mathbf{e}_i)$$

is called the mean curvature normal at x. The main purpose of this note is to prove the following:

THEOREM 1. Let M be an oriented closed n-dimensional submanifold of E^{n+N} . Then M is contained in a hypersphere of E^{n+N} centered at $c \in E^{n+N}$ if and only if we have either $(X-c) \cdot H \ge -1$ or $(X-c) \cdot H \le -1$.

PROOF. Let c be a fixed vector in E^{n+N} . Then by a direct computation for the Laplacian Δ of the function f:

Received by the editors July 13, 1970 and, in revised form, September 4, 1970. AMS 1970 subject classifications. Primary 53C40, 53C45, 52A55; Secondary 53A05.

Key words and phrases. Position vector, mean curvature normal, mean curvature, Laplacian, support function, submanifold in a hypersphere.

$$(3) f = (X - c) \cdot (X - c)$$

on M, we get

$$\Delta f = 2n(1 + (X - c) \cdot H).$$

Therefore, we know that if we have either $(X-c) \cdot H \ge -1$ or $(X-c) \cdot H \le -1$, then the function f is a constant. Thus M is contained in a hypersphere of E^{n+N} centered at c. Conversely, if M is contained in a hypersphere of E^{n+N} centered at c, then the function f is a constant. Hence, by formula (4), we get $(X-c) \cdot H = -1$. This completes the proof of the theorem.

If the codimension N=1, then the mean curvature H of M is given by H=He, where e is the unit outer normal vector field, and the support function p is given by $X \cdot e$. From Theorem 1, we get

COROLLARY. Let M be an oriented closed hypersurface of E^{n+1} . Suppose that either $pH \ge -1$ or $pH \le -1$. Then M is a hypersphere.

ACKNOWLEDGEMENT. The author would like to express his hearty thanks to Professor T. Nagano for the valuable conversations.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823