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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually

elegant and polished character, for which there is no other outlet.

SUBMANIFOLDS IN A EUCLIDEAN HYPERSPHERE

BANG-YEN CHEN

Abstract. Let M be an oriented closed »-dimensional sub-

manifold of a euclidean (re-f-iV)-space £n+,v. Let X and H be the

position vector field and the mean curvature vector field of M in

En+N. Then M is contained in a hypersphere of En+N centered at c

when and only when either (X—c) • H ä — 1 or {X—c) • H á — 1.

Let M be an oriented closed ra-dimensional submanifold of a

euclidean space En+N of dimension ra + A, and let X be the position

vector field of M in En+N. Then M is a riemannian manifold with the

induced metric. In the following, let V and V be the covariant dif-

ferentiations of M and En+N, respectively. Let u and v be two tangent

vector fields on M. Then the Gauss formula gives

(1) Vuv = Vuv + a(u, v),

where a(u, v) is the second fundamental form of Ü7. If {ei, • • • , en}

is an orthonormal basis in the tangent space TX(M), then the normal

vector

(2) H = (1/ra) ¿ «(e,, e,)
«-i

is called the mean curvature normal at x. The main purpose of this

note is to prove the following:

Theorem 1. Let M be an oriented closed n-dimensional submanifold

of EH+N. Then M is contained in a hypersphere of En+N centered at

cEEn+N if and only if we have either (X—c)-H^—l or (X — c)
•77^-1.

Proof. Let c be a fixed vector in En+lf. Then by a direct computa-

tion for the Laplacian A of the function /:
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(3) f=(X-c)-(X-c)

on M, we get

(4) A/= 2n(l + (X-c)-H).

Therefore, we know that if we have either (X—c) -275: — 1 or (X—c)

•27^ —1, then the function/ is a constant. Thus M is contained in a

hypersphere of En+N centered at c. Conversely, if M is contained in

a hypersphere of En+N centered at c, then the function/ is a constant.

Hence, by formula (4), we get (X—c)-H= —1. This completes the

proof of the theorem.

If the codimension N= 1, then the mean curvature 27 of M is given

by H = He, where e is the unit outer normal vector field, and the

support function p is given by Xe. From Theorem 1, we get

Corollary. Let M be an oriented closed hypersurface of En+1. Sup-

pose that either pH^ — I or pH^ — 1. Then M is a hypersphere.
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