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PERTURBATION OF COMPLETE ORTHONORMAL
SETS AND EIGENFUNCTION EXPANSIONS

JERRY L. KAZDAN1

Abstract. A technique is given for determining the asymptotic

properties of vectors which are perturbations of a given basis—the

eigenfunctions a selfadjoint operator. Its application is illustrated

by a differential equation example, not using the Hubert space

norm. An estimate is also given for the codimension of the span of a

perturbed set of vectors.

In many specific problems, one has a selfadjoint operator with a

complete set of eigenvectors and a second operator differing from it

by a "small" operator. The problem is to determine the properties of

the second from those of the first. For example, are the eigenvectors of

the second operator complete and are they in any sense close to those

of the first operator? Although the problem is old, most solutions are

quite technically complicated.

There are two general approaches. The first [l ], [2] shows that the

eigenvectors of the perturbed operator are asymptotically close to

those of the unperturbed operator, from which the completeness is

deduced. In this approach the asymptotic behavior of the eigenfunc-

tions is the difficult part. Bary-Krein (see [3, p. 265]) and later in a

special case Birkhoff-Rota [l] observed that the completeness then

follows rather easily. The second method [4], [S] utilizes contour

integration around points of the spectrum to establish the results.

In this paper we follow the first approach. It turns out that with a

slight abstraction, the asymptotic behavior follows in a brief and

elementary way. This is our Theorem 1. In §2 we apply it to classical

Sturm-Liouville theory. §3 illustrates a concrete application, not in a

Hubert space, that follows from our method but is inaccessible to the

more abstract approach of §1. Although the results are known, our

proofs are considerably shorter than previous ones. Moreover, the

techniques should be useful in other specific applications where

Hubert space theory is not applicable. In §4 we briefly consider more

general perturbation of bases and give an amusing estimate of the

codimension of the span of the perturbed vectors.
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1. Let Lo be an unbounded selfadjoint operator with domain

D(Lo) in a Hubert space H, having simple eigenvalues X*—»<» with the

corresponding complete set of orthonormal eigenvectors ek, L0ek

=A*e¡fe.

Let L=L0+Li, where Li is a bounded but not necessarily self-

adjoint operator with D(L) =D(L0). ßk and Xk will denote the eigen-

values and corresponding normalized eigenvectors of L, LXk=ßkXk-

The symbol ôi = min3^/fe|Xy—Xa| is the "isolation distance" of the

eigenvalue X*. We begin with an easy inequality.

Lemma 1. IfZED(L0) and Z±ek, then

| (Lo - Xk)Z |   è h I Z | .

Proof. Write Z=12î a^e,- and Zn =T^? a,e,-. Then, since a* = 0,

| (¿o - Xk)Z |2 è  | (Zo - X*)Z„ |2 =   ¿ | Xy - X» |* | aj\'
i

s£**¿ |^|'-¿|Z.|'.
1

Now let n—»» on the right.

The following lemma shows that under certain conditions Xk-^ek

as£—>°°.

Lemma 2.  \ek—Xk\ ^2(\\k—ßk\-\-\Li\)/ok.

Proof. Since LXk=ßkXk, then (Lo—\k)Xk = (ßk — \k)Xk—LiXk.

We always can write Xk = aek+Zk, where a is a scalar (which we

can assume is ^0 by multiplying Xk by a scalar of absolute value

one), and where Zk is orthogonal to the nullspace of L0— X&, that is, to

ek- Now Zk satisfies the inhomogeneous equation (La—\k)Zk

= (p.k—\k)Xk—LiXk so that by Lemma 1,

h | Zk I   á  | (ßk — Xk)Xk — LiXk I   á   | Mfc — ̂ -a |   +  | ¿i | .

Also,   l = |Z*|2=|fleA;|!!+|Z4|2,   so   that   Ogl-ag|Z*|.   Conse-

quently,

\ek- Xk\   g  | (1 - a)ek - Zk\  ^ Í - a + \ Zk\

<2|ZJ   <o>-X*l  +Uil   ,
1      ' 5k

With but minor modifications, both Lemma 1 and Lemma 2 remain

valid if the eigenvalue X* is not simple. However, that assumption
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becomes more important when one wants to prove the completeness

of the Xk's. The key is

Lemma 3 (Bary-Krein). Let {ek} be an orthonormal basis for H

and Xk a set of linearly independent vectors in the sense that ¿_, akXk = 0

strongly implies o* = 0. If ^ \Xk — e*|2<«> then the set {Xk} is a

Schauder basis for H.

Remark. If the X/s are not linearly independent, one can still

estimate the codimension of their span. See §4.

Our theorem now follows immediately from these lemmas.

Theorem 1. Let Loek = Kkek and LXk=pkXk, where L = L0-\-Li with

Lo selfadjoint and having pure simple point spectrum. If (a) Li is

bounded, (b) \\k— Pk\ <oc, and (c) 2^1/5it<oo, then (i) Xk = ek

-\-0(\/hk) as k—>co, and (ii) the eigenvectors {Xk} of L are complete.

2. It is straightforward to apply the above to classical Sturm-

Liouville theory. Moreover, an examination of the above proofs shows

that one can ignore the delicate issues involved in dealing with strict

selfadjoint extensions of unbounded operators. For example, consider

L0u = — u",       Lu = — u" + qu,

where qEC[0, l] is real, and say the boundary conditions are

m(0)=m(1)=0.ThenL0actingonBC2= {uEC2[0, l]\u(0) =u(l) =0}

is formally selfadjoint (by closing the operator it becomes strictly

selfadjoint, but we ignore that). Its eigenvalues and eigenfunctions

areXn =n2ir2, en(x) =21/2sin nirx, « = 1, 2, •••.

By Sturm's oscillation theorem, L also acting on BC2 has an

infinite number of eigenvalues pn and \pn — X„ | á 121 « ( | '» — uniform

norm on [0, l]). Since 5„ = minj^n\j2ir2 — n2ir2\ =(2n — 1)tt2, we con-

clude that the eigenfunctions «„ of L have the asymptotic behavior

un(x) =2l>2 sin mrx-\-0(1/n) inL2[0, l] as w—><», and that thewB'sare

complete in L2 [0, 1 ]. Note that since L is formally selfadjoint the wB's

are orthonormal so the special case of Lemma 3 proved in [l] is

adequate. By standard methods one can show that iifEBC2 (or even

if f'EL2[0, l] and satisfies the boundary conditions) then its

eigenfunction expansion converges uniformly.

3. Our abstract method can often be adapted to concrete situations

where L0 and L=L0+Li have different domains. For variety, we

shall use uniform norms in place of Hilbert space norms in the follow-

ing illustration.
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Consider the operator Lüu = —u" acting on BC2, as before, and the

perturbed operator Lu= —u"+qu, acting on C2[0, l] functions but

with the boundary values

«(0) + citt'(O) = 0,       «(1) + c2u'(\) = 0,

where for simplicity, we assume that Ci^O, c2^Q. The idea is to re-

place the estimate of Lemma 1 by a similar one using variation of

parameters and then use this estimate in imitating the proof of

Lemma 2.

Theorem 2. un(x)=2112 cos mrx+0(l/n) uniformly as ra—►<» and

the Un s are complete in L¡ [0,1 ].

Proof. Let <bn(x) = 21/2 cos rnrx, \pn(x) =2l/2 sin nirx, and let m„ be

the normalized rath eigenfunction of L with corresponding eigenvalue

ßn. Then Lun=ß„un so that u" +n2Tr2un = (n2ir2—ßn+q)un. By using

variation of parameters this can be written as the integral equation

«. =an<pn+bnipn+Zn, where

1  r*
tn(x) = — I    [raV — ß„ + q(t)]un(t) sin nir(x —

nirJo
l)dt,

and where the constants an and bn are determined by the boundary

values of u. As before, we multiply w„ by a scalar of absolute value

one to insure that a„ ^ 0.

Note that by the Schwarz inequality (here |  12 is 2^(0, 1) norm)

■      | ,      |    ^   | wV - ßn |   +  | g| 2       a

nir n

since under our hypothesis |ra27r2— ßn\ ^ constant independent of ra,

as can be proved by the Sturm oscillation theorem. Also note that

«»(0) =a„21'2 and «'„(0) =nwbn21'2.

Claim. As »—» » | an — 11 =0(l/ra)and |è„| =0(l/ra).
This is proved as follows. Now 0 =«„(0) +Cim'„(0) = (on+CiW7ri»n)21/2,

so that | an\ =\ Cira7rZ»„|. But

ttn  =    |  M>» |> "    |  »n  —  bn$n  —  Z„ \2  á   1  +    \b»\    +    |  Zn\2,

and similarly 1 ^an+|&n| +1Znj 2- Putting these two lines together

we obtain the claimed orders of growth. These inequalities show that

| «» - <*>» |. =    |  (On -  l)4>n + M« + 2n |.  = 0(l/fl).

This proves the asymptotic result of Theorem 2. The completeness

again follows from Lemma 3.
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4. Let {e,} be a complete orthonormal set for a separable Hubert

space. If the vectors {x,} are close to the {e¡}, we estimate the

codimension of the span of {xj}. This extends Lemma 3. R(L) and

N(L) denote the range and nullspace of L.

Lemma 4. Let P be an orthogonal projector. Then

dimR(P) = ^\Pej\2.

Proof. The right side is just the trace of P. In more detail, let {e,}

be an orthonormal basis for R(P). Then

Z I Pej\2 = Z Z I <*, <*>l2 = Z Z I fe. <*>|2
j 3       k k       j

=   Z U|2 = dimic(P).

Theorem 3. Let Lbe a linear map admitting an adjoint L*. If {xj}

ER(L) then

dim R(L)-1-^  Z I % - eA2-

In particular, if S is any subspace, then for any vectors {x¡} £S we have

(by letting L = projection into S)

diniS^g   Z \xi-es\2.

Proof. Let P denote the projector into N(L*). Now xj±.N(L*) so

I *i - e¡\2 =  | P(x, - e,) |2 + | PHx, - e}) \2 =  | Pe;\2.

Summing over j and applying Lemma 4, we conclude that dimAf(L*)

^Z ¡Xj-e,]2. ButN(L*) =R(L)\
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