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ZERO SETS OF FUNCTIONS FROM
NON-QUASI-ANALYTIC CLASSES

ROBERT B. HUGHES

Abstract. It is well known that any closed subset of the line is

the zero set of a C-function. One can also specify the orders of the

zeros at the isolated points. The present paper improves this result

by replacing the class of C°°-functions by any non-quasi-analytic

class of C°-iunctions.

If {ifn}"=0 is a sequence of positive numbers we let C{Mn\ denote

the set of functions/ in C*(R) to which there correspond ß/ and B¡

satisfying

||/"||. á ßfB*M„       n = 0, 1, • • • .

The purpose of this paper is to prove the following:

Theorem. Let JM„}"_o be a sequence of positive numbers such that

"%2ñ-i Mn-i/Mn< °° • Let E be a closed set in R and let S be a set con-

sisting of at most countably many isolated points of E. Let d be a func-

tion which assigns a positive integer to each point in S. Then there is a

function f in C{M„} with {xER'f(x) =0} =E and furthermore for

every s in S the order of the zero off al s is d(s).

We let S contain only isolated points since any limit point of the

zero set of / could not be a zero of finite order for /. The Denjoy-

Carleman Theorem [2, p. 376] shows that a condition such as

^2ñ-i Mn-i/Mn< co is necessary to prevent C{ikf„} from being

quasi-analytic.

We will repeatedly use the following theorem which can be found

in [l, pp. 79-84] where it is credited to H. Bray:

Theorem. Assume {A7«}™,,) is a sequence of positive numbers such

that JVo = l and ^2"-i^n<cc where X„ = 2V„_i/2V„. Assume g0 is a

bounded measurable function on R which vanishes outside a compact set.

For n = 1, 2, • • •  define gn on R by

1      rx"
gn(x) = —-    |     gn-i(x + t)dt.

2A„   J -\n
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Then {gn} converges uniformly to a function g in CX(R) with ||g(n)||Œ

^\\go\UNnforn = 0, 1, • • • .

We will first obtain some functions which will be used in building

the function of our theorem. We let {sn} be a strictly increasing

sequence of positive numbers satisfying: si = l, s„ tends to », and

2^»_i Mn-iSn/Mn< ». For example we could take

sn = (const) (  2 Mk-i/Mk
\ k~n

We define {Nn} as follows: Ar0 = l and N„ = Mn/(si ■ ■ ■ sn) for n

= 1, 2, • • ■ . Then Xn-i Nn-i/Nn= E»-i M„-isn/M„ < » and we

let X denote this sum. By applying Bray's theorem to the function

which is 1 on (—X, X) and 0 elsewhere we obtain a function g in

C°°(7?) which satisfies:

(i)0gg = l;
(ii) g>0 on ( —2X, 2X) and 0 elsewhere; and
(iü) ||g(n)|U = ^»forw = 0. 1, • • -.

Scaled translates of g, i.e. functions of the form Ag(a(t — b)), will

be used to define/ in complementary intervals of E whose endpoints

do not belong to 5.

In order to define/ in a complementary interval of E which has at

least one endpoint in 5 we will use the following:

Lemma. Let k be a positive integer. Then there are functions hi(t, k)

and h2(t, k) in Ca(R) such that

(i) 0á|**|ál.*-l. 2;
(ii) hi5¿0 on (0, 4X) and 0 elsewhere, i = \, 2;

(iii) there is a number c > 0 such that hi(t, k) = cth on  [0, X] and h2(t, k)

= c(t—4X)* on [3X, 4X]; and

(iv) \\hin)\\^Nnforn=0, 1, • • •  andi = \, 2.

Proof. We first observe that if P(x) is a polynomial and p>0 then

1     r*
—    j    P(x+ t)dt
2ß      J -p

is a polynomial having the same leading term as P(x). If for each n

we apply Bray's process to the function which is xn on [—X, 2X] and

0 elsewhere, we obtain functions Rn(x) which on [0, X] are poly-

nomials with leading term x". Determining coefficients o¿ such that

on [0, X], Rk(x) +ak-iRk-i(x) + ■ • • +a0Ro(x)=xk, we obtain a

polynomial xk+ak-ixk~1+ ■ ■ ■ +a0 = Q(x) such that applying Bray's

process to the function which is Q(x) on [—X, 2X] and 0 elsewhere

.—1/2

for n > 1.
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yields a function which on [0, X] is xk. Let c>0 be sufficiently small

that \cQ(x)\ gl on [-X, 3X]. Let h he the function in C°(R) ob-
tained by applying Bray's process to the function which is cQ(x) on

[—X, 2X], 1 on [2X, 3X], and 0 elsewhere. We obtain hi from h by

changing the definition of h to be 0 on (— », 0]. h2 is obtained in a

similar way.

We will use scaled translates of g, hi, h2 to define / in the comple-

mentary intervals of E. We now introduce a function which will be

used as a factor to decrease these functions on small complementary

intervals. We define h>0 on (0, °°) by h(t) =1 for t in [if1, oo) and

h(t) =(si • • ■ 5„_i)sñ"+1 for t in [sñl, sñ-i). re = 2, 3, • • • . There are

exactly two properties of h which we will use. If k is a nonnegative

integer, then

(1) lim,_»o+^(/)i_* = lim„_,00 h(s~1)sn = 0; and

(2) supt>oh(t)t-k = supn>oh(sñ1)s„ = SiSi • • • sk.

We choose a function a on E which is 0 on E\S and which takes

the values +1 and — 1 on 5 in such a way that it possesses the follow-

ing property: assume s and / are in S and j is the largest number in 5

which is smaller than t; then if d(t) is odd, cr(s) and <r(t) have opposite

signs, while if d(t) is even then a(s) and a(t) have the same sign. The

function <r will be used to insure that the function we are building

does not vanish in any complementary interval of E.

We now define /. We treat the case where the complement of E

has no unbounded components since the other case requires only an

easy modification. We let / be 0 on E and write the complement of

E as U(a„, b„) where each (an, bn) is a component of the complement

of E. On (an, bn) we define

f(t) = h(bn - an){g(iX[bn - anMi - (an + bn)/2])

■(1-   |«r(a„)|)(l-   \o-(bn)\)

+ o-(an)hi(4:X[bn - an]-^ - a»], d(an))

+ 0-(bn)hi(iX[bn - <vh[í - an], d(bn))} .

We let D be the union of the complement of E, the interior of E,

and the set of isolated points of E. Every point of D has a neighbor-

hood on which / is C°°. Also one checks that for s in 5 the order of the

zero of / at s is d(s) as desired.

We will now show / is continuous on R. For I in a component inter-

val of length / of the complement of E and w = 0, 1, • • •  we have

(*) \fM(t) I ^ 2A(Qf-(4X)»7v-„
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which tends to 0 with I. Continuity of / off D follows easily from (*)

with w = 0.

We next show that / is differentiable and also that /'(/) is 0 for t

in E\S. It is easily seen that if x<y then there is a point t^ in (x, y)

i~\D such that f(x)—f(y)=f'(txy)(x—y). Assume t0 is in E\S and

let e>0. Using (*) with n = 1 we see there is a number c>t0 such that

|/'(0| <eforiin (l0, c)C\D. Thus for t0<s<l<c we have

\(f(s)-f(l))/(s-t)\ =  \f'(tat)\ <e.

Letting 5—Ho we have \f(t)/(t — t0)\ <e for l0<t<c. Hence

lim sup(J.¡+ \f(l)/(t —10)\ <e. We conclude that/'(i0) exists and is 0.

Using (*) again one checks that/' is continuous on R.

Letting /' play the role of / in the above argument, we see that /"

exists as a continuous function and is 0 in E\S. Continuing in this

manner we see that/ is in C°(R).

For t in a component interval of length / of the complement of E

we have

|/<»>(/) | g 2h(l)l-"(i\)"Nn =" 2(4A)"il7„.

Hence |/<n)(i)| ^2(4X)nikf„ on the dense set 7? and thus/is in C{il7n}.

As an example of an application of our theorem we give the follow-

ing:

Corollary. Let E and E' be closed sets of real numbers. Then there

is a continuous solution u(x, t) to the heat equation, uxx = ut, in the

(x-t)-plane satisfying {f.u(0, t)=0}=E and {f.ux(0, t) =0} = £'.

Proof. We define

A fM(t)x2"      ^ gMtfíx2^1

h     (2n)\ h (2n+i)\

where/and g are in C{r(3«/2)} with appropriate zero sets.
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