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ZERO SETS OF FUNCTIONS FROM
NON-QUASI-ANALYTIC CLASSES

ROBERT B. HUGHES

ABSTRACT. It is well known that any closed subset of the line is
the zero set of a C*-function. One can also specify the orders of the
zeros at the isolated points. The present paper improves this result
by replacing the class of C*-functions by any non-quasi-analytic
class of C*-functions.

If { M.}, is a sequence of positive numbers we let C{M,} denote
the set of functions f in C*(R) to which there correspond B; and By
satisfying

” (»)“°° < B/B;M., n=0,1,--.
The purpose of this paper is to prove the following:

THEOREM. Let { M, n};‘,’,o be a sequence of positive numbers such that
ey M1/ M, < . Let E be a closed set in R and let S be a set con-
sisting of at most countably many isolated points of E. Let d be a func-
tion which assigns a posilive integer to each point in S. Then there is a
Sfunction f in C {M,.} with {xER: f(x) =0} =E and furthermore for

every s in S the order of the zero of f al s is d(s).

We let S contain only isolated points since any limit point of the
zero set of f could not be a zero of finite order for f. The Denjoy-
Carleman Theorem [2, p. 376] shows that a condition such as
Domi May/M,< » is necessary to prevent C{M,} from being
quasi-analytic.

We will repeatedly use the following theorem which can be found
in [1, pp. 79-84] where it is credited to H. Bray:

THEOREM. Assume {N,.},T_o 15 a sequence of positive numbers such
that No=1 and Y ;. A\, < o where \y=N,_1/N,. Assume g, is a
bounded measurable function on R which vanishes outside a compact set.
Forn=1,2, - - - define g, on R by

An
f gns(s + DL,

n(X) =
g(2) e Jo
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Then {g.} converges uniformly to a function g in C*(R) with lle™]l
<|lgol|oNw for n=0,1, - - -.

We will first obtain some functions which will be used in building
the function of our theorem. We let {s.} be a strictly increasing
sequence of positive numbers satisfying: s;=1, s, tends to «, and
> s Ma_15a/M.< . For example we could take

0 —1/2
s» = (const) ( Z Mk_l/Mk) for n > 1.
k=n

We define {N,} as follows: No=1 and N,=M.,/(s; - - - s,) for n
=1, 2,---. Then X o N.y/N,= Z,T_l M, 1s./M, <o and we
let X denote this sum. By applying Bray’s theorem to the function
which is 1 on (—X\, N) and 0 elsewhere we obtain a function g in
C=*(R) which satisfies:

() 0=g=1;

(ii) g>0 on (—2\, 2\) and O elsewhere; and

(iii) ||g™||w S Nw for n=0, 1, - - -

Scaled translates of g, i.e. functions of the form Ag(a(t—b)), will
be used to define f in complementary intervals of E whose endpoints
do not belong to S.

In order to define f in a complementary interval of E which has at
least one endpoint in S we will use the following:

LEMMA. Let k be a positive integer. Then there are funciions hi(t, k)
and he(t, k) in C*(R) such that

() 0= |hi| =1,4=1, 2;

(i) k:;=0 on (0, 4\) and O elsewhere, 1=1, 2;

(iii) there is @ number ¢ >0 such that ha(4, k) =ct* on [0, \] and ha(t, k)
=c(t—4N)* on [3N, 4\]; and

@(iv) ||2|| S Nu for n=0,1, - - - andi=1, 2.

Proor. We first observe that if P(x) is a polynomial and >0 then
1 B
— f P(x + t)dt
2u Jy

is a polynomial having the same leading term as P(x). If for each n
we apply Bray’s process to the function which is x* on [—X\, 2\] and
0 elsewhere, we obtain functions R,(x) which on [0, A\] are poly-
nomials with leading term x”. Determining coefficients a; such that
on [0, N], Ru(x)4ar1Re1(x)+ - - - +aoRo(x) =x*, we obtain a
polynomial x*+4ar_1x*1+ - - - +a0=Q(x) such that applying Bray’s
process to the function which is Q(x) on [—\, 2\] and 0 elsewhere
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yields a function which on [0, A] is x*. Let ¢>0 be sufficiently small
that |cQ(x)| <1 on [—\, 3\]. Let & be the function in C*(R) ob-
tained by applying Bray’s process to the function which is ¢Q(x) on
[=X\, 27], 1 on [2)\, 3\], and 0 elsewhere. We obtain #; from k& by
changing the definition of % to be 0 on (— », 0]. &, is obtained in a
similar way.

We will use scaled translates of g, ki, k2 to define f in the comple-
mentary intervals of E. We now introduce a function which will be
used as a factor to decrease these functions on small complementary
intervals. We define >0 on (0, ) by k(f) =1 for ¢ in [s;’, ©) and
h(t)=(s1 - + - sar)sp; ™ for ¢ in [s;?, s32), n=2, 3, - - - . There are
exactly two properties of 2 which we will use. If k is a nonnegative
integer, then

(1) lime.o+ A(E)t*=limp.q k(s; ")sE=0; and

(2) supiso B(D)t*=supaso h(s;)sh=s152 * * * Sk

We choose a function ¢ on E which is 0 on E\S and which takes
the values +1 and —1 on Sin such a way that it possesses the follow-
ing property: assume s and ¢ are in .S and s is the largest number in S
which is smaller than ¢; then if d(f) is odd, o(s) and o(¢) have opposite
signs, while if d(#) is even then ¢(s) and o () have the same sign. The
function ¢ will be used to insure that the function we are building
does not vanish in any complementary interval of E.

We now define f. We treat the case where the complement of E
has no unbounded components since the other case requires only an
easy modification. We let f be 0 on E and write the complement of
E as U(aa, b,) where each (a,, b,) is a component of the complement
of E. On (a,, b,) we define

O = hbn — an) {g(4A[bn — @] [t — (an + 82)/2])
‘(= | o)) = | o))
+ o'(an)hl(‘l')‘[bn - aﬂ]_l[t - aﬂ]: d(a,))
+ o (ba) ha(4N[br — @, ][t — a.], d(B2))}.
We let D be the union of the complement of E, the interior of E,
and the set of isolated points of E. Every point of D has a neighbor-
hood on which fis C*. Also one checks that for s in S the order of the
zero of f at s is d(s) as desired.

We will now show f is continuous on R. For ¢ in a component inter-
val of length ! of the complement of E and =0, 1, - - - we have

*) [7™@) | < 2h@)"(40)" N
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which tends to 0 with I. Continuity of f off D follows easily from (*)
with n=0.

We next show that f is differentiable and also that f/(¢) is 0 for ¢
in E\S. It is easily seen that if x <y then there is a point 5, in (x, )
ND such that f(x) —f(y) =f'(tz)(x—7y). Assume ¢, is in E\S and
let €>0. Using (*) with n=1 we see there is a number ¢ > ¢, such that
If'(t) | <efortin (¢, ¢)ND. Thus for tp <s <! <c we have

| (Fs) = FO)/ (s = D] = | ft) ] < e

Letting s—¢, we have |f(t)/(t—to)| <e for 1y<t<c. Hence
lim supe.s | @/ (t—to)l <e. We conclude that f'(fy) exists and is O.

Using (*) again one checks that f’ is continuous on R.

Letting f’ play the role of f in the above argument, we see that f*/
exists as a continuous function and is 0 in E\S. Continuing in this
manner we see that f is in C*(R).

For ¢ in a component interval of length ! of the complement of E
we have

[ /@@ | < 26@F(@N)"Na < 2(4N)"M,.

Hence | f™ ()| £2(4\)* M., on the dense set D and thus fis in C{ M.,}.
As an example of an application of our theorem we give the follow-
ing:

COROLLARY. Let E and E' be closed sets of real numbers. Then there
is a continuous solution u(x, t) to the heat equalion, u..=u;, in the
(x—1t)-plane satisfying {t:u(0,t) =0} =E and {t:u.(0,t) =0} =E"

Proor. We define

© ) () x2n © (n) () x2n+1
Zf() i ™)

am0 (2m)! a0 (2n 4+ 1)!
where f and g are in C{I'(3n/2) } with appropriate zero sets.

u(x, ) =
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