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A COMPARISON LEMMA FOR HIGHER ORDER
TRAJECTORY DERIVATIVES1

R. W. GUNDERSON

Abstract. A basic result from higher order differential in-

equalities is used to obtain a comparison lemma, useful when

higher order trajectory derivatives of Liapunov functions are

known.

1. Introduction. Several recent results have focused interest on

the question of obtaining stability criteria in terms of higher ordered

derivatives of Liapunov functions. Yorke [l] and Kudaev [2] have

investigated conditions on the second trajectory derivative and Butz

[3] discussed a condition involving the third derivative. In addition,

Butz referred to the availability of derivative information from on-

line computation of n-functions as motivation for further study of

conditions of this type. In the following a basic result from the theory

of higher ordered differential inequalities is used to obtain a com-

parison type lemma involving trajectory derivatives of arbitrary

order. It is shown that application of the lemma offers several poten-

tial advantages in the study of solution behavior by means of i/-func-

tions.

2. Notation and definitions. Consider the system of first order

differential equations

(1) x = f(t, x)

and the mth order comparison equation

(2) «t»)(0 = w(t, u,u', ■■ ■ , m<'»-1>)

where x, f belong to Rn and /, u are scalar. Assume/ continuous on

Dr={(l, x)\0^t^T< + oo, |x|<r] and the right side of (2) con-

tinuous on [O, T] XRm- A solution of (1) satisfying the initial condi-

tion xo at to will be denoted by x(t, t0, x0) and a solution of (2) satisfy-

ing the initial conditions uU)(l0) =u¡ (j = 0, 1, 2, • • • , m — l) will be

denoted by u(t, t0, Uo).
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The following are adaptations of definitions from first order differ-

ential inequalities to inequalities of higher order (cf. [4]).

Definition 1. The scalar function g(x), xERn, will be said to be of

type W* on a set SERn if g(a) èg(b) for any a, b in S such that

a„ = bn,ai^bi (i = l,2, ■ • • ,n — 1).

Definition 2. A solution um(t, t0, Uo) is called a right maximal

solution of (2) on an interval [l0, a) if

u(i\t) á uí\t, to, Uo),        t E [h, a) H [to, a*),

for any solution u(t) satisfying the initial conditions u(í>(to) t=u¡

(j=0, 1, 2, • • • , m — 1) and defined on [to, a*).

Definition 3. The scalar function a(r), defined for Ogr, will be

said to be of type K if it is continuous and strictly increasing for r ^0

and if o(0) =0 while o(r)—»» asr—+».

In the following, the vector inequality a^b for o, bER" implies

Oi = 6,for all ¿ = 1, 2, • • • ,n.

3. A comparison lemma. The following is given relative to (1) and

(2):

Lemma. Letv'.DT-^R and let vECm,fECm~1 on Dr. Let w of (2) be of

type W* in S for each t, where S= {(t, v(t, x), v'(t, x), • ■ ■ , vim-1)(t, x))

\(t,x)EDT} and

a„«-i>       dv<->-1)
(3) v W (t, x) = —— + —-/(/, x).

dt dx

Suppose

(4) t><m)(/, x) g w(t, v,v', ■ ■ ■ , Dt™-1')

for (t, x) EDr and set v(i)(0, x0) =u¡. Let I denote the maximal interval

of existence of the right maximal solution um(t, 0, U0). Then

(5) vU\t, x(t, 0, *„)) Û uÍ\t, 0, Uo)

for each tEICy[0, T].

The proof of the lemma follows almost immediately upon ap-

plication of a basic theorem for «th order differential inequalities, due

mainly to Kamke (cf. [6, pp. 60-61]), and a standard proof showing

the equivalence of the derivative (3) to the &th trajectory derivative

n(i)(i, x(t, 0, x0)), [5, p. 3]. It is possible to weaken the conditions on v

and /somewhat by use of Yoshizawa's trajectory derivative, however

the derivative (3) is more likely to be of use in the applications.
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Remark 1. The above lemma remains true if the inequalities " jg"

are replaced throughout by "Jg" and if "right maximal solution" is

replaced by "right minimal solution."

Since the inequality (4) implies the system of first order inequalities

¿1  =   »2,

is = v3,

Vm  ^   W(t, Vl, V2,   •   ■   ■  , Vm)

it is natural to view higher order derivatives as a means of obtaining

vector ^-functions. That is, assuming (5) and appropriate additional

assumptions on the functions Vi, it is possible to invoke numerous

theorems (e.g. [6, pp. 267-311]) to show that the existence of a cer-

tain solution property for (2) (e.g. exponential stability) implies the

corresponding property for (1). There are several practical difficulties,

however, which limit the value of this approach. One such difficulty is

created by having to require the right side of (4) to be of type W*.

This restriction essentially eliminates the use of linear comparison

equations for stability investigations, since the characteristic poly-

nomial of such an reth order comparison equation must be of the form

s   ± aB-iin_1 — a„-2sn~2 — • • ■ — ais — a0 = 0        (a< S: 0)

while a necessary condition for stability is that all coefficients be

positive. Another difficulty is encountered in satisfying the additional

properties, such as definiteness properties, required of the functions

v(i) in (5). In fact, these assumptions will in general be either equiv-

alent or more difficult to satisfy, than those of the classical theorems

of the direct method.

By use of the lemma it is possible to obtain results, such as the

following, more suited to the application of higher ordered trajectory

derivative information.

Theorem 1. Let v,f, w satisfy the conditions of the lemma and sup-

pose f(t, 0)=0 ore [0, oo ). In addition, suppose

(i) ai(\x\ ) £v(t, x) úa2(\x\ ), (I, x) EDr, alt a2EK,

(ii) that solutions of (2) satisfy the inequality 0<u(t, 0, Va) <as(và),

»o=i>(0, xo), a3EK, where V0= {v(0, x„), v'(0, x0), • • • , t>(m-1)(0, x„)}

and \xo\ Oi, 0<ri<r. Then

(iii) the zero solution of (1) is stable at f =0.
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Proof. The proof follows by defining 5 to be the composition func-

tion d=a21-a31-ai so that |*o| <S implies v(0, x0) =Voúo¿2(\x0\)

<(a31-ai)(e). Then u(l, 0, V0) <a3(v0) <o¡i(e) and, by the lemma,

ai( | x(t, 0, xo) | ) = v(t, x(t, 0, Xo)) g u(t, 0, V0) < ai(e),

i.e., \x(t, 0, xo)\ <eîor te[0, »).

In the same manner, it is possible to obtain similar results for most

of the remaining stability properties. However, before proceeding

further it is useful to examine the conditions of the theorem relative

to the applications.

Remark 2. Condition (i) is certainly more realistic than the corre-

sponding conditions resulting from direct application of vector v-

function theorems, where inequalities of the same type must be

satisfied for each of the derivatives of v. Condition (ii) offers some

improvement also, in that the solution property required of the

comparison system (2) need hold only on the set V0 of initial values.

At least in theory then, it should be possible to satisfy condition (ii)

even though the comparison system (2) may not be stable at t = 0.

In practice a convenient means of verifying the condition would be

through showing the solution property to hold on some neighborhood

of the origin in Rm, which contains V0 for ri sufficiently small. Un-

fortunately, this again leads to difficulties with linear comparison

systems, since condition (ii) would then require the real part of

every root of the characteristic equation to be nonpositive.

Remark 3. From the proof to the theorem it can be seen that once

the inequality (4) is established only the initial values vij)(0, x0) are

required to obtain an estimate for v(t, x(t, 0, xo)) for />0. Since the

initial values !/(i)(0, x0) are easily calculated, the lemma might profit-

ably be used to obtain estimates on the behavior of particular solu-

tions x(t, 0, xo). While such estimates might not imply stability in

the sense of any of the formal definitions, such information may well

be of equal or greater importance to a given application. The follow-

ing theorem should prove useful.

Theorem 2. Let v(l, x) =x'Hx where 77 is positive definite and sup-

pose the trajectory derivatives of v, formed relative to (1), satisfy

(6) D(m) ± am-iv{-m-1) - am^m~2) — ■ ■ ■ — a0v =- 0

for (t, x)EDr and o¿ = 0 (t = 0, 1, 2, • • • , m —1). Then

1   m

(7) \x(t, 0, Xo)|2^ — XW)
y *-i
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for all t^O, (l, x(t, 0, x0))EDr, where 2?-i c*«*(0 ** a particular solu-

tion of the comparison equation

(8) «(m) ± «»-i«1"-11 - am_2wCm-2) - • • ■ - a0u = 0,

y is the minimal eigenvalue of H and where the constants Ck satisfy the

system of inequalities

(9) v ' (0, x0) ^ J2 ckUk (j «■ 0, 1, • • • , m — I).
fc=i

The proof follows immediately from the lemma, since the com-

parison equation u(m) —a0u-\-aiu'-{- • ■ ■ +M(m_1) has right side of

type W* and since the positive definite quadratic form v(t, x) =x'Hx

will satisfy an estimate of the form yx'x^v(t, x). Note that the

characteristic equation of (8) will always possess at least one root

with positive real part, so that in certain applications it may be de-

sirable to set the corresponding coefficient ck = 0 in (7) and (9).

Assuming solutions exist to (9) for (0, x0)EDr, the estimate (7)

will hold. Note also that since v is positive definite, the condition (6)

can always be satisfied assuming vim)(t, x) bounded on DT.

Remark 4. Theorem 2 remains valid if the inequalities " ^ " are

replaced throughout by " ^ ".

Example. Consider the (unstable) system of two first order differ-

ential equations

xi = — 3xi + ix2,       x2 = — 2*1 + 3x2

and let v=x2l-\-xl. Then

Î 2
v = — 6*i + 4xix2 + 6x2

and
2 2

v = 28xi — 72xix2 + 52x2.

Since v is positive semidefinite, by Theorem 2 and Remark 4,

| x(t, 0, x0) | ^   | x01

for every (0, x0) such that ¿(0, xo) ^0.
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