
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 28, No. 1, April 1971

PSEUDO-COMPLEMENTS IN POSETS1

P. V. VENKATANARASIMHAN

Abstract. In this paper a theory of pseudo-complements is

developed for posets (partially ordered sets). The concepts of ideal

and semi-ideal are introduced for posets and a few results about

them are obtained. These results together with known results about

pseudo-complements in distributive lattices lead to the main re-

sults. It is proved that if in a pseudo-complemented semilattice or

dual semilattice every element is normal, then it is a Boolean

algebra. Using this result new proofs for two known theorems are

obtained. The existence of maximal ideals in posets is established

and it is shown that the dual ideal of dense elements of a poset

with 0 is the product of all the maximal dual ideals.

Already, there exists a theory of pseudo-complements for lattices.

Frink [5] has obtained a generalisation of the theory for semilattices.

In this paper we extend some of the results of Frink [5] and Bala-

chandran [l] to posets (partially ordered sets). We obtain these

extensions by using the concept of semi-ideal, which we define in §2.

This paper consists of three sections. In §1 we summarise some

known results which we use in later sections. §2 deals with some of the

properties of semi-ideals and ideals in posets. Our definition of poset

ideal is different from that introduced by Frink [4]; however in a

lattice our definition is equivalent to the usual definition. Using the

results obtained in §2, we develop a theory of pseudo-complements

for posets in §3.

1. Preliminaries. We shall denote the ordering relation in a poset

by ^.
Let A = {ai\ i£:l\ be a subset of a poset P. Then the least upper

bound (l.u.b.) and the greatest lower bound (g.l.b.) of A are also

called the lattice-sum and the lattice-product of the a,-; they are

denoted by ^,e/ a. and IJier o¿ respectively. When A is finite, say,

A = {alt a2, ■ ■ ■ ,an\, the lattice-sum and the lattice-product of the a,

are denoted by ai+a2+ • • • +a„ and Of . . .  -an respectively. The
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least and greatest elements of a poset, when they exist, are denoted by

Oandl.

A subset of a lattice L which contains the lattice-sum in L in every

pair of its elements is called an additive subsystem of L. A multi-

plicative subsystem is defined in a dual fashion. A subset of a com-

plete lattice L is called a S-subsystem of L if it contains the lattice-

sum in L of any number of its elements. Dually we define a II-sub-

system. A subset of a complete lattice L which is both a S-subsystem

and a II-subsystem is called a complete sublattice of L.

In a lattice L, a sum ¿_,iei ai is said to be distributive if for every

¿>£L, b-^iei ai=~^2iei b-a{. A latttice in which every sum is dis-

tributive is called a S-distributive lattice. 11-distributively is defined

dually.

We shall denote the pseudo-complement of an element a in a lattice

L by a*. The pseudo-complement of a* will be denoted by a**, that of

a** by a*** and so on.

Lemma 1 [2, p. 49]. If P is a poset with 0 in which every nonvoid

subset has a l.u.b. (or dually) then P isa complete lattice.

Lemma 2 [2, p. 148]. In a distributive lattice L closed for pseudo-

complements, the following results hold:

(i) a fía** for every aÇzL.

(ii) a^b^a*^b*fora,bEL.
(iii) a*** = a* for every a EL.

(iv)  (a+b) *= a* -b* for every pair a, &£L.

(v)  (a • b) * = (a* +6*) ** for every pair a, b £Z.

(vi)  (a-b)** =a**-b**for every pair a, b(EL.

(vii) The set N of normal elements of L forms a Boolean algebra under

the same ordering relation as in L. Further N is a multiplicative sub-

system of L and the lattice-sum a®b of any pair a, &£7V is given by

a®b = (a+b)**.

Remark. By finite induction the results (iv), (v) and (vi) of the

above lemma can be extended to any finite number of elements.

Lemma 3 [3]. A set S is a Boolean algebra if and only if it is closed

under a binary operation (•) and a unary operation (*) satisfying the

following postulates :

(i) a-a=a for every oGo".

(ii) a-b = b-afor every pair a,bÇzS.

(iii) a ■ (b ■ c) = (a ■ b) ■ cfor every triple a,b,c(ES.

(iv) There exists an element 0 in S such that a-b* = 0^>a-b=a for

a, bÇES.
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Lemma 4 [2, p. 147]. A ^-distributive complete lattice is closed for

pseudo-complements.

2. Semi-ideals and ideals. A nonnull subset A of a poset P is

called a semi-ideal if oG4, b^a (bE:P)=>bE:A. A nonnull subset A

of P is called an ideal if (i) A is a semi-ideal and (ii) the lattice-sum of

any finite number of elements of A whenever it exists, belongs to A.

Dual semi-ideal and dual ideal are defined dually. The set of all

elements x of P such that xSa for some fixed aÇzP forms an ideal of

P. It is called the principal ideal generated by a and is denoted by (a].

Dually we have the notion of the principal dual ideal [a) = {x | x è a}.

By a maximal ideal (maximal dual ideal) of a poset with 0 (1) we

mean a maximal element of I„ (/„) (for the definitions of /„ and Ia see

Theorem 2).

In this paper, set-inclusion, set-union and set-intersection will be

denoted by Ç, \J and fl respectively.

The following result is easily proved.

Theorem 1. The set Sß of all semi-ideals of a poset with 0 is a com-

plete 2, TL-distributive lattice under ÇZ as ordering relation. If A

= \Ai\iÇE.l} is any subset of 5„, U;e/ A, and Phe/ -4» are respectively

the l.u.b. and the g.l.b. of A. Similar result holds for the set Sa of all dual

semi-ideals of a poset with 1.

Corollary. 5,, is closed for pseudo-complements and quasi-com-

plements.

The above result follows immediately from Theorem 1, Lemma 4

and its dual.

The psuedo-complement of a semi-ideal A in S„ is denoted by A *.

It is easily seen that A* = {x\ (x]P\(<z] =(0] for every a£4 }. Since

the set-intersection of any family of ideals of a poset P with 0 is an

ideal and P itself is an ideal of P the following theorem is clear from

Lemma 1.

Theorem 2. The set I» of all ideals of a poset P with 0 is a complete

lattice under set-inclusion as ordering relation and I» is a multiplicative

subsystem of Sß. Similar result holds for the set Ia of dual ideals of a

poset with 1.

We shall denote the lattice-sums in /„ by the symbol V-

Lemma 5. In a poset P, a lattice-product IX¿ez a> ilattice-sum

¿_,iei aï) exists if and only if fl.e/ (a.] (fl¡e/ [a«)) M a principal ideal

iprincipal dual ideal). Also whenever\\ ai (X] #¿) exists fl(öi] = (H a,]

(fl[ii-E4
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Proof. Suppose H ai exists. Then clearly (H a,-]czri(ai]. Also if

#GD(at], then #^a¿ for every t£7 and so #^ü at. Hence D(ii]

Ç (H «<]• H follows that D(a,] = iJJ «<]•
Conversely, if fl(o¿] = (#], then #5=a¿ for every t£L Also if y^a»

for every *'£/, then y GD(a,] = (#] and consequently y ¿x. It follows

thatH a; exists andU o,- = #. The second part is proved along similar

lines.

Lemma 6. In a poset P a finite lattice-sum 01+02+ • • ■ +o» (a

finite lattice-product ai-a2- . . . -an) exists if and only if (ai]V(a2]

V • • • V(ön] ( [ai) V [ai) V • • • V [an)) is a principal ideal (principal

dual ideal). Also whenever öi+a2 + • ■ • +an (ai-a2- • ■ ■ -an) exists

(ai]V(o2]V • • • V(o»] = (ai+a,+ • • • +an] ([oi)V[<n)V • ■ ■ V [a.)

= [ah at- . . .  -an)).

Proof. Suppose ai+a2 + • • ■ +an exists. Since ai, a2, • • • , <z„

G(oi]V(a,]V • • • V(a»], ai+fl2 + ■ • • +o»G(oi] V (c] V • • ■

V(aB]-Clearly (ai]V(oa]V • ■ • \Z(an]Q(ai+a2+ ■ ■ ■ +a„]. Hence

(ai]V(a2]V • • ■ V(o„] = (ai+a2+ • • • +an]- Conversely, if (aj

V(a2]V • • ■ V(an] = (#], then clearly ï^oi, a2, • • • , a„. Also, if

y^Oi, a2, • • • , a«, then y3(ai]V(a2]V • ■ -V(ö„] = (#] and so y^x.

It follows that ai+a2+ ■ ■ • +an exists and ai+a2+ • ■ • +an=x.

The proof of the second part is similar.

Theorem 3. Given an ideal (a dual ideal) A of a poset P and an ele-

ment b^A (ÔGP), among all ideals (dual ideals) containing A and not

containing b there exists a maximal one.

Proof. It is easily seen that the set-union of any totally ordered set

of ideals (dual ideals) is an ideal (a dual ideal) and is the l.u.b. of the

set. Hence the result follows by Zorn's lemma.

Corollary. ^4«y ideal (dual ideal of a poset P with 1(0) is contained

in a maximal ideal (maximal dual ideal).

Taking b — i (b = 0) in Theorem 3, we get the corollary.

3. Pseudo-complements in posets. An element a of a poset P with

0 is said to have a pseudo-complement a* in P if there exists in P an

element c* such that (i) (a]r\(a*] = (0] and (ii) for b£P, (a]r\(b]

= (0]=*(^] —(a*]- It is clear that the pseudo-complement of an ele-

ment, whenever it exists, is unique. A poset is said to be closed for

pseudo-complements if it has 0 and every one of its elements has a

pseudo-complement. The concept of quasi-complement is defined in an

obvious way using principal dual ideals. An element a of a poset P
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with 0 (not necessarily closed for pseudo-complements) is said to be

dense if a* =0. Clearly this means (a]r\(b] = (0]=»(ô] = (0], for b£P.

As in a lattice, an element a of a poset P closed for pseudo-comple-

ments is said to be normal if a=a**. The notions of dually dense

element and dually normal element are defined in a dual fashion.

Remark 1. From Lemma 5 it is clear that our definition of pseudo-

complement coincides with Frink's definition in a semilattice.

Remark 2. There exist posets closed for pseudo-complements

which are neither lattices nor semilattices. The poset represented by

the diagram given below is an example of such a poset.

1

\   f

\    V   e

y> d

0

Lemma 7. In a poset with 0 the pseudo-complement a* of an element a

exists if and only if ia]* is a principal ideal. Further whenever a* exists

Proof. Suppose a* exists. Then by definition (a]P\(a*] = (0].

Hence (a*]ç(<z]*. Now, if xE(a]*, then (a]n(x]Q(a]n(a]* = (0]

and so (x]ç;(a*] by the definition of a*. Consequently (a]*Ç(a*]. It

follows that (o]* = ia*].

Conversely, if (a]* = (b], then (a]r\(b] = (0]. Also, if x£P and

ia]C\ix] = iO], then (x]Q(a]* = (b]. It follows that a* exists and

a*=b.

Theorem 4. In a poset P closed for pseudo-complements, the follow-

ing results hold :

(i) a^a** for every a£P.

(ii) a^b=*a*tb*fora,bGP.
(iii) a***=a* for every aG?.

(iv) P has a greatest element 1 and 1=0*.

Proof, (i) Since a** is the pseudo-complement of a* and (a*]

C\ia**] = (0] = (o*]P\(a] the result follows from the definition of a**.
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(ii) a^è=>(a]ç(ô]=>(a]*2(&]* (applying (ii) of Theorem 2 to

£„). Hence by Lemma 7, a^b=^>a*^b*.

(iii) Replacing a by a* in (i) we get a* :2a**. Also asa ^a** by (il

a*^a*** by (ii). Hence (iii).

(iv) If x is any element of P, clearly (0]P\(x] = (0] and so by the

definition of 0*, (x]ç(o]* = (0*]. Hencex^O* so that0* = l.

Theorem 5. In a poset closed for pseudo-complements the following

results hold :

(i) // a finite product ai-a2- . . . -an exists in P, then so does the

product ax   -a2   • . . .   -an  . Further

**       **     ** **
(ai• a2• . . . • a„)     = ai   • a2    ■ . . . -an

and (ai ■ a2 ■ . . . ■ an)   = (ai   • a2    ■ . . . • an  ) ■

(ii) If a sum ^¿e/ «i exists in P then the product H¿Er a* exists in P

and (X) a¿)*=il a*-

Proof, (i) By Lemma 7,

((ava2- . . . ■ (h)**] = (or«2- • • • •a„]** = ((a1]n(a2]n ■ • -n(a„])**

(by Lemma 5)

=(aj**n (a2]**n ■ ■ -r\(an\**

(by (vi) of Lemma 2 applied to S„ and the remark under Lemma 2)

= (aî*]r\(a**]n ■ ■ .nC]

(by Lemma 7). By Lemma 5 it follows that ay , a2 ■ . . . -a**

exists and (ai-a2- . . . •a„)**=a1 -a2 ■ . . . -an . Hence by (iii) of

Theorem 4,

(ai-ai-. . . • an)* = (ai**-a** ■ . . . ■ a**)*.

(ii) Now 2J o-i = o,i for every iÇE.1 and so by (ii) of Theorem 4,

Œl û»)*=tt* for every ¿£7. Also if x£P and x^a* for every ¿£/,

then a¿^a¡ ^x* by (i) and (ii) of Theorem 4 and so X) ai^x*.

Hence by another application of (i) and (ii) of Theorem 4, we get

x^x**^(%2 ai)*. It follows that H a* exists and H a? = (£ aj*.

Theorem 6. Let P be a poset closed for pseudo-complements. If a

subset N of normal elements of P is closed for pseudo-complements, con-

tains 0 or 1 and is a semilattice or a dual semilattice, then N is a Boolean

algebra.
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Proof. Let N be a semilattice satisfying the other conditions. In

view of Lemma 3, it suffices to prove that a-b*=0<^a-b—a for

a, b£N. Now if a-b*=0, then a^b**=b as b^N, and so a-b=a. On

the other hand, if a-b=a, then a-b* =a-b-b* =a-0 = 0. Thus a-b*

= Ck=>a-ô=a.

Now suppose N is a dual semilattice satisfying the other conditions.

Define a-6 = ia* + b*)*, + denoting the lattice-sum in N. Then as A7is

closed for (*) and ( + ), a-b<=N. Also a = a** = ia*+b*)* by (ii) of

Theorem 4 as a*^a*-\-b*; that is a^a-b. Similarly b^a-b. If x£./V

and x —a, 6, then by (ii) of Theorem 4, x*^a*, b* and so x*=^a*+¿>*.

Consequently as x(E.N, by (ii) of Theorem 4, x=x**^(a*-f6*)*

= a-b. Thus it follows that a-b is the lattice-product of a, b in AT.

Hence the result follows by the first part.

Remark. The above theorem is a generalisation of the following

theorem of Frink [5 ] : The normal elements of a semilattice closed for

pseudo-complements form a Boolean algebra.

Corollary. If in a semilattice or a dual semilattice S closed for

pseudo-complements, every element is normal, then S is a Boolean

algebra.

The following theorem is due to Varlet [7], but the proof given here

is different from his proof.

Theorem 7. A uniquely complemented lattice L which is also closed

for pseudo-complements is a Boolean algebra.

Proof. Let a CZ, and a' the unique complement of a. Then a ■ a' = 0

and so c'^a* where a* is the pseudo-complement of a in L. Hence

a+a* = l. Similarly a*+a** = l. Also a-a* = 0=a*-a**. Thus a and

a** are complements of a*, and so, as L is uniquely complemented

a =a**. Now the result follows by the corollary to Theorem 6.

We give below a new proof of a known theorem (cf. [6]).

Theorem 8. A uniquely complemented lattice L which is also rela-

tively complemented is a Boolean algebra.

Proof. Let a £Z, and b an element of L such that a • b = 0. Let c be a

complement of a+b in [b, l]. Clearly a^a-\-b and & = c. Hence

o-c = a-(a+&) -c=a-b=0 and a+c=a+è+c=l. Thus as L is

uniquely complemented, c is the unique complement of a and so it is

independent of b; that is, if x is any element such that a-x = 0 then

x^c. Hence c=a*. Thus L is closed for pseudo-complements. Now

the result follows by Theorem 7.
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Lemma 8. If {A ¿| i(E.l\ is a family of ideals of a poset P then

VAi - {*| (*] Ç (aa] V (an] V • • • V (a,-.],      a* G ¿oj-

A similar result holds for dual ideals.

The proof of the above lemma is similar to that of the correspond-

ing result for lattices.

The following theorem generalises the corresponding result for

lattices, due to Balachandran [l].

Theorem 9. The set D of all dense elements of a poset P with 0 is a

dual ideal of P. Further D is the product of all the maximal dual ideals

of P.

Proof. For proving this, first we observe that xG£><=>(x]* = (0].

Now suppose xG-D, x£flM,-, Mi being the maximal dual ideals of

P. Then x(£M, for some maximal ideal M of P. Hence JlfV [x) =P

and so by Lemma 8, there exist elements ax, a2, • • • , a„GAf such

that [0)C [x) V [ai) V [a2) V • • ■ V [a„). By Lemma 6, it follows that

x-ai-a2- . . . -a„ = 0. Consequently (ai]V(a2]V ■ • ■ V(a„]çi(x]*

= (O] as xG-D. Hence by Lemma 5, ai-a2- . . . -a„ = 0 which is absurd

asai-a2- . . .  -a^Mj^P. It follows thatxGHilf¿ and so

(1) D Ç ÍW,-.

On the other hand, if x(£D then (x]*?í(0] and so there exists an

element y (^0) in P such that (x]P\(y] = (0]. By Lemma 5, x-y = 0.

Since y 5^0, by the corollary to Theorem 3, there exists a maximal

dual ideal M such that yE:M. As x-y = 0, x(£M. It follows that

x^flAfiandso

(2) rw< Ç D.

The second part of the theorem follows from (1) and (2). Since the

intersection of any family of dual ideals is a dual ideal, the first part

follows from the second.
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