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TWO REMARKS ABOUT HEREDITARY ORDERS

H. JACOBINSKI

Abstract. In the first remark it is shown that, over a Dedekind

ring, hereditary orders in a separable algebra are precisely the

"maximal" orders under a relation stronger than inclusion

(Theorem 1). At the same time simple proofs for known structure

theorems of hereditary orders are obtained. In the second remark a

complete classification is given of lattices over a hereditary order,

provided the underlying Dedekind ring is contained in an algebraic

number field and the lattices satisfy the Eichler condition (Theorem

2).
•

Let o be a Dedekind ring with quotient field k, A/k a separable

finite-dimensional algebra over k and R an o-order in A (i.e. a finitely

generated O-algebra in A, containing the identity and such that

kR = A). An order R is hereditary, if every left ideal is a projective

i?-module. It is a classical result—apart from terminology—that

maximal orders are hereditary, but the converse of this is false: there

are nonmaximal hereditary orders. Our first remark is, that if inclu-

sion is replaced by a stronger relation, hereditary orders are charac-

terized by the property of being locally maximal everywhere under

this relation. To avoid confusion, we will use the term extremal orders

instead. This characterization of hereditary orders can be used to

give very simple proofs of some known properties of hereditary orders,

which were obtained by Harada [4] and Brumer [2]. Since Brumer

[2] is not available in print, we include proofs of the main results

given there.

In the complete local case, the structure of i?p-lattices is well known

(Brumer [2]). The basic fact is that indecomposable i?p-lattices are in

fact lattices over a maximal order containing Rp. This does not hold

globally and only partial results are known in that case. Using results

of an earlier paper (Jacobinski [5]), we give a complete classification

of lattices over a hereditary o-order, provided the quotient field of 0

is an algebraic number field. The local theory yields a classification of

genera of ¿^-lattices. Our result is that the lattices in a restricted

genus are isomorphic. This means that two i?-lattices M and N are
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isomorphic if MP=NP for all p and if moreover £)M=£)N for an

arbitrary maximal order O containing R.

1. Let i? and S be o-orders in A. We say that 5 radically contains

R, notation S>R,il S^R and J(S)DJ(R), where /(S), J(R) denotes

the Jacobson radical. An order R is extremal if S>R implies S = R.

Every order is radically contained in an extremal order. This follows

by the same argument as the corresponding result for maximal orders

(Deuring [3, p. 70]).

If 0 contains an infinite number of prime ideals, the Jacobson

radical of every order vanishes. In this case S>R reduces to SZ)R

and extremal orders are identical with maximal orders. Thus only a

semilocal Dedekind ring o is of interest in this context and we can as

well consider completions. Let p be a prime in o and let op, Rp be the

corresponding £-adic completions. Then SP>RP is stronger than

inclusion. We call an order R locally extremal if for each p, the com-

pletion Rp is an extremal op-order in Ap.

Theorem 1. An o-order R is hereditary if and only if it is locally

extremal.

An order R is hereditary if and only if Rp is hereditary for each p.

Thus we have to show that Rp is hereditary if and only if it is ex-

tremal. For the proof of this, we derive first some properties of extremal

orders. Let E denote the right order of J(RP), i.e. the endomorphism

ring of J(RP) as a left i?p-module. E contains Rp but is in general

different from Rp. We first show

Proposition 1.  The order Rp is extremal if and only if E= Rp.

First we remark, that an i?p-ideal I is in J(RP) if and only if it is

nilpotent modulo p'Rp for some2>0. The radical J(RP) is a right E-

ideal, a power of which is in pRp(ZpE. This implies J(RP)C.J(E) and

so Rp <E. Thus if Rp is extremal, we must have RP=E.

Conversely suppose E=RP and let S be an order radically contain-

ing Rp. Then if a is sufficiently large we have paS CJ(RP) and so there

is an integer b such that Jb(S) CJ(RP)- But then J(Rp)Jb-1(S) CJ(RP)

and so Jb~l(S) is contained in the endomorphism ring of J(RP), that is

in Rp. This implies that already Jb~l(S)(ZJ(RP) and by repeating this

argument we obtain that J(S) =J(RP). Since J(S) is a right 5-ideal,

this implies 5 (ZRP, which completes the proof. Obviously the pro-

position remains valid if E is replaced by the left order of J(RP).

Let Cp be the maximal order in the center of Ap. Then clearly the

order generated by Rp and Cp contains Rp radically. If i?^ is extremal
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it must contain Cp and is consequently a direct sum of extremal orders

in simple algebras. Thus we can—and will—assume that Ap is a

simple algebra.

Now choose a maximal order ¡0P that contains Rp and denote its

radical by *$. Then Rp +•$ >Rp and so $ C.RP- This shows that an

extremal order is completely determined by its image in 5)j, =£)„/$.

Let V be an indecomposable Op-lattice. Its endomorphism ring Í2 is

then a maximal order in a skew-field and we consider F as a right Q-

lattice. Let p be the radical of £2. Then Q=Çl/$ is a skew-field and

V = F/^J F is a right Ö-vectorspace.

Proposition 2. Let

S: F = Vo D Vx D ■ ■ ■ D V,-x D Fs = 0

be a strictly descending sequence of right û-vectorspaces and put

5(8) = {x(=£)P, xVi C Vi, i = 0,1, • • • , í}.

T'Aéra 5(8) m a« extremal op-order and every such order Rp can be ob-

tained in this way by choosing a maximal order Dp containing Rp and

defining &by Vi = JlV, where J is the radical of Rp.

First we remark that every 0-endomorphism of F is induced by an

element of £)p. Consequently, 5(8) consists of all O-endomorphisms

Í2, that take each subspace F< into itself.

The radical of 5(8) is easy to describe. It consists of all x in Op such

that xViC_ Vi+x- For these elements form a two-sided ideal J in 5(8)

and 1'C.ty implies that / is in the radical. On the other hand, 5(8)/I is

isomorphic to the direct sum of the Enda(F¿/F¿+i), which is semi-

simple and so /contains the radical.

Let Vi be the inverse image of F¿. Then 5(8) can equally well be

described as the set of all xÇzAp, such that xF¿C F< for i = 0, ■ ■ ■ ,

s — 1, and the radical J of 5(8) as the set of all xÇzAp such that

xVi C F»+i for i=0, ■ ■ ■ , j — 1. Moreover, JVi— Vi+1 and so the left

order E oí J must take each F,+i into itself for i = 0, • • • ,5 — 1. Since

VS='$V= V, this means that E = 5(8) and 5(£) is extremal according

to Proposition 1.

Conversely, suppose Rp is extremal and embed it in a maximal

order Op. Define the chain 8 by Vi = JtV. Then clearly 5(8)>i?p

which implies Rp = 5(8).

We now come to the proof of the theorem. We have to show, that

Rp is hereditary if and only if it is extremal. Suppose first that Rp is

hereditary. Auslander-Goldman [l, p. 5] have shown that this

implies   that   J(RP)   is   right   invertible,   i.e.   RP = JU,   where   U
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= {xÇzAp, JxCZRp}- We give a different proof, using the fact that

.ftp-lattices have unique decomposition into indecomposable lattices.

Since Rp is hereditary, J is left projective and so the indecomposable

lattices occurring in / are isomorphic to direct factors of Rp. Then / is

right invertible if every type of indecomposable lattice occurring in Rp

occurs in / too. If this were not so, we could find a central idem-

potent ë in Rp/J such that ëJ/J2 = 0. Lifting ë to an idempotent e of

Rp, we have eJCZJ2 and also eJÇZeJ2. Using Nakayama's lemma this

means eJ = 0. Since pe(EcJ, we see that e =0 and this shows that / is

right invertible. But the relation JU = RP implies that the left order of

J is equal to Rp. According to Proposition 1, this implies that Rp is

extremal.

Conversely, suppose that Rp is extremal. Then according to

Proposition 2, RP = S(&) where the chain S is defined by Vi = JiV for

¿ = 0, • • • , 5 — 1 with J'V = 0. Since 5(8) induces all fi-linear trans-

formations of F that take each F,- into itself, it follows that J' V = ty V.

If 8 is the ramification exponent of Ap (that is l$':=p£)p), we obtain

that J" V = pV. Put I = p-1J". Then JF¿ = 7/ and so 7 is a two-sided

ideal in Rp. If I were t^Rv, we could find an idempotent e in Rp such

that elCZJ- But this implies eF< = e/F,C7F!= F¿+i and so e is in the

radical of Rp. This means e=0 and I = RP. Now from the relation

p~lJ"=Rp we see that the radical J is both left and right invertible.

This is known to imply that Rp is hereditary (Auslander-Goldman

[l, p. 5]), but can easily be shown directly. Let M be a left ideal in

Rp. Since / is invertible, M and JM are projective simultaneously.

Replacing if necessary M by J~'M we can assume that M(£/. Via

the image of M in Rp/J we obtain a decomposition

M = Rpe 0 Mx

where e is an idempotent and Mi a left i?p-ideal contained in /. Since

Rpe is projective, we see by repetition that M is projective. Thus Rp is

hereditary, which completes the proof.

By means of the theorem we can obtain very easy proofs of a num-

ber of properties of hereditary op-orders, which were first shown by

Harada [4] and Brumer [2]. First, Proposition 2 which is now valid

for hereditary orders, is identical with the main theorem of Brumer

[2]. Obviously, it yields an explicit description of hereditary op-

orders as sets of block-matrices with entries in the maximal order Q of

the underlying skew-field. We prove some additional results due to

Brumer.

Proposition 3. Let Rp be a hereditary op-order in the separable
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algebra Ap, J the radical of Rp, Op a maximal order containing Rp, ty its

radical and Van indecomposable £)p-lattice.

(a) If eis the ramification index of Ap, i.e. '$'=p£)p, then

pRp = J"

where s is the number of simple algebras in Rp/J.

(b) Every indecomposable Rp-lattice is isomorphic to a lattice JiV

wifh0^i<s.

(c) The left order of J'Vis a maximal order Qpi) and

»-i    ._

Rp = n oP* •
0

Moreover, the orders Op' are the only maximal orders containing Rp.

Proof of (a). This has already been shown in the proof of the

theorem.

Proof of (b). Since Rp is hereditary, a i?p-lattice U is indecom-

posable if and only if Ap® U is an irreducible Ap-moâu\e. Thus we

can assume that UCZ V. Since J is invertible, we can find an integer m

such that JmUC V but JmU<tJV. The image of JmU in F/$ V is then

invariant under Rp and from Proposition 2 we see that JmU= V.

Thus J"V represents all types of indecomposable i?p-lattices.

The left order of Jn V is a maximal order 0Pn> since the right order is

maximal. If JnV=JmV as i?p-lattices, they are also isomorphic as

O^-lattices. From the theory of lattices over maximal orders it is

well known that then /" V =JmVp' = Jm^'V. But we have seen above,

that <$V = JSV. Consequently, JnV^JmV if and only if n = m is)

which completes the proof.

Proof of (c). If the maximal order Op contains Rp, an indecom-

posable ©¿-lattice is at the same time an indecomposable i?p-lattice

and this implies £)P=D(P according to (b). Thus the orders O™ are

the only maximal orders containing Rp. Clearly flOy'Di??. On the

other hand an element of this intersection takes each J'V into itself

and is thus contained in Rp according to Proposition 2. This com-

pletes the proof of (c).

We remark to (c) that an intersection of arbitrary maximal orders

in general is not hereditary. The following corollary shows this more

explicitly.

Corollary . Let Op be a maximal order, ty its radical and

« = p r   , . . . s~).
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a proper factorization of P, that is the left order O™ of O,- equals the right

order of >&i+\. Then

Rp = r\DP<)
i

is hereditary and every hereditary order can be obtained in this way.

This follows immediately from Proposition 2 if we define the chain

8 by V = Fo and F< = O Jw.

2. We now leave completions and consider again a Dedekind ring o

and a hereditary o-order R in the separable algebra A/k. Some of the

local results can be transferred immediately. In particular, R must

contain the maximal order of the center of A and is thus a direct sum

of hereditary orders in simple algebras. Proposition 3(c) yields that R

is the intersection of the maximal orders containing it. Also the

Corollary can easily be globalized.

Proposition 4. Let Dbea maximal o-order in A and let *ßi, • • • , ^3r

be distinct two-sided prime ideals in £). If

$i • • • % - O. • • • Oi

is a proper factorization oftyi- ■ ■ tyr, i.e. the left order £}(<) of 0¿ equals

the right order of Oi+i, then

r = no(i)i

is hereditary and every hereditary order in A can be obtained in this way.

Since all the 'iß, are distinct, the factorization above reduces at

every prime p to a factorization of the same type as in the Corollary.

This means that each Rp is hereditary and so R is hereditary. On the

other hand let a hereditary order R be given and choose a maximal

order O containing it. According to the Corollary we have at each

prime p a factorization

to) (»)
j(oP) = o., • • • or

such that Rp is the intersection of the left-orders of the 0< . Adding

if necessary some factors Dp we can assume that the length sp is the

same for all p. Define 0< by the condition (Oj)p = Oi<rt for all p.

Then Os • • • Oi is by construction a product of distinct two-sided

prime ideals of O. Moreover, R is the intersection of the left orders of

these O,- since this is true at each prime p.
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However, (b) in Proposition 3 does not hold any longer. If M is an

indecomposable i?-lattice, Mp can be decomposable and its left order

is the intersection of the maximal orders corresponding to these

factors, which is not maximal in general. The classification of R-

lattices is therefore more complicated than in the complete local case.

In fact only partial results seem to be known if A is a direct sum of

rings of matrices over commutative fields (Brumer [2]). If the

quotient field k of o is an algebraic number field, we can give complete

invariants for the types of i?-lattices. For this we use results of

Jacobinski [5], which will be quoted asGD.

Recall that two i?-lattices belong to the same genus, notation

M~N, if for all p, MP^NP as i?p-lattices. In fact it is sufficient that

this is true for a finite set U of primes, containing all p such that Rp is

not maximal (GD, Lemma 3.1).

The fact that i?p-lattices are easily classified by use of Proposition

3(b) means that genera of i?-lattices are equally easy to classify. The

genus TiM) containing M is completely determined by the type of

Mp for pÇiU. This type is determined if for each maximal order O

containing R, we know the multiplicity of each indecomposable Op-

lattice in a decomposition of Mp. For different primes p in U, these

multiplicities have to satisfy a number of relations, expressing the

fact that kp®Mp=kp®M (cf. [GD, Lemma 3.2]). There is no need

giving these relations in detail. Since genera of i?-lattices thus are

known, our task reduces to describing the isomorphism-classes in a

genus.

A i?-lattice M is said to satisfy the Eichler condition, if none of the

simple algebras in Hom^&M, kM) is a totally definite quaternion

skew-field (cf. [GD, p. 5], where this is denoted by MÇE.&R')- In other

words, let e¿ be a primitive central idempotent in A and let e¡A be a

ring of matrices over the skew-field A¿. If A¿ is a totally definite

quaternion skew-field, dkM is not allowed to be irreducible; other-

wise there is no condition on dkM.

Let O be a maximal order containing R. Two i?-lattices M, N are in

the same restricted genus [GD, p. 10] if M~N and £)M^DN.

Theorem 2. Let o be a Dedekind ring whose quotient field k is an

algebraic number field, R a hereditary o-order in a separable algebra

A/k and M a R-lattice, that satisfies the Eichler condition. Then all

lattices in the restricted genus that contains M are isomorphic or, in

other words, M~N and OM=ON implies M=N.

We can assume that A is a simple algebra. According to [GD, Prop-
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osition 2.10], a lattice N is in the same restricted genus as M if and

only if

(*) M © T 9á A7 © T

where T is the i?-lattice ¡0 ©O. Thus we have only to show that J" can

be cancelled here. According to the cancellation theorem [GD,

Theorem 4.1], T can certainly be cancelled if for each p in U, Tp is a

direct factor of some sMp = Mp® • ■ • ®MP. This can be obtained

easily by choosing D and thus T conveniently. Since Mp is a direct

sum of lattices over maximal Op-orders, we can choose ¡0 such that Mp

contains an Op-lattice ^0 as direct factor for each p in U. Then

clearly Dp and also Tp is a direct factor of sMp for a suitable s. Thus T

can be cancelled in (*), which completes the proof.

The O-lattice £)M is completely described, up to isomorphism, by a

certain ideal class in the maximal order of the center of A [GD, p. 5].

Thus the types of i?-lattices are completely described by such an ideal

class together with the multiplicities characterizing the genus of M,

that we described above.

The theorem also implies the following result about cancellation.

Corollary. Let 0, R and M be as in Theorem 2 and X an arbitrary

R-lattice. Then a relation M®X^áN®X implies MSiN.

For such a relation implies M~N and, since M satisfies Eichler's

condition, also DM^DN. The theorem then yields M^N.
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