A COMPARISON THEOREM

WALTER LEIGHTON AND WILLIAM OO KIAN KE1

ABSTRACT. In this paper the authors consider a pair of differential equations $y_1'' + p_1(x)y_1 = 0$, $y_2'' + p_2(x)y_2 = 0$, where $p_i(x)$ are positive and continuous, and where solutions $y_1(x)$ and $y_2(x)$ have common consecutive zeros at x = a and x = b. They show that if the curves $y = p_1(x)$ and $y = p_2(x)$ have a single intersection (possibly a closed subinterval) and if $p_1(a) > p_2(a)$, $p_2(b) > p_1(b)$, the first conjugate point of $a + \epsilon$ ($\epsilon > 0$ and small) for the second equation precedes that of the first.

Consider the differential equations

(1)
$$y_1'' + p_1(x)y_1 = 0,$$

$$(2) y_2'' + p_2(x)y_2 = 0,$$

where the functions $p_i(x)$ are positive and continuous on an interval $I: [a, b+\delta]$ ($\delta > 0$). If solutions $y_1(x)$ and $y_2(x)$ of equations (1) and (2), respectively, have common consecutive zeros at x=a and x=b, and if $p_1(a) > p_2(a)$, it follows from the Sturm comparison theorem that the curves $y = p_1(x)$ and $y = p_2(x)$ must intersect. In recent years a number of papers have been concerned with differential equations of the above type when these curves have a single point of intersection. Notable among these are Fink [2], [3], Eliason [4] and [5].

In the present paper we assume that the curves $y = p_i(x)$ intersect once on the interval (a, b), but the intersection may be either a point or a closed subinterval of (a, b). We have the following result.

THEOREM. If the curves $y = p_1(x)$ and $y = p_2(x)$ have the properties described above, if equations (1) and (2) have solutions $y_1(x)$ and $y_2(x)$, respectively, for which x = a and x = b are consecutive zeros, and if

(3)
$$p_1(a) > p_2(a), \quad p_2(b) > p_1(b),$$

then, for $\epsilon > 0$ and sufficiently small, the first conjugate point of $x = a + \epsilon$ for equation (2) precedes the first conjugate point of $x = a + \epsilon$ for equation (1).

Received by the editors November 14, 1969.

AMS 1969 subject classifications. Primary 3442.

Key words and phrases. Second-order linear differential equation, conjugate point, comparison theorem.

¹ This will acknowledge the partial support of the authors by the U. S. Army Research Office (Durham) under Grant numbered DA ARO D31-124-G979.

To begin, we recall a result due to one of the present writers [6].

LEMMA. If c is a conjugate point of x_0 with respect to the equation²

$$(4) y'' + p(x)y = 0,$$

then

(5)
$$dc/dx_0 = y'^2(x_0)/y'^2(c),$$

where y(x) is any nonnull solution of (4) such that $y(x_0) = y(c) = 0$.

Without loss in generality, we may assume that

$$y_1'(a) = y_2'(a) = 1,$$

and we first show that for δ positive and sufficiently small,

(6)
$$y_1(x) < y_2(x) (a < x \le a + \delta).$$

Note that

$$\lim_{x \to a} \frac{y_1''(x)}{y_2''(x)} = \lim_{x \to a} \frac{p_1(x)y_1(x)}{p_2(x)y_2(x)} = \frac{p_1(a)}{p_2(a)} > 1.$$

Since $y_i''(x) < 0$ $(i = 1, 2; a < x \le a + \delta)$, for δ small, we have $y_1''(x) < y_2''(x)$ $(a < x \le a + \delta)$. It follows that

$$\int_a^x y_1''(x)dx < \int_a^x y_2''(x)dx \qquad (a < x \le a + \delta);$$

accordingly,

(7)
$$y_1'(x) < y_2'(x) (a < x \le a + \delta).$$

A similar argument shows that (7) implies (6).

Consider next the "wronskian"

$$w(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$$

and its derivative

$$w' = (b_1 - b_2)v_1v_2.$$

Note that w(a) = w(b) = 0 and that near x = a, w' > 0, while near x = b, w' < 0. Further, $w'(x_0) = 0$ for x_0 on (a, b) if and only if $p_1(x_0) = p_2(x_0)$. Inasmuch as the curves $y = p_i(x)$ have a single intersection on (a, b) it follows that w(x) > 0 on (a, b). These observations lead to the conclusion that the curves $y = y_1(x)$ and $y = y_2(x)$ have no point in

² We assume p(x) to be continuous on I.

common on (a, b), for, if there were such a point, there would be a first such point $x = x_1$. The fact that $w(x_1) = y_1(x_1) \left[y_2'(x_1) - y_1'(x_1) \right]$ would then be positive would imply that $y_2'(x_1) > y_1'(x_1)$ —which is impossible because of (6). Thus,

(8)
$$y_1(x) < y_2(x) \quad (a < x < b).$$

Next, we shall show that

Note that

(10)
$$\frac{y_1''(x)}{y_2''(x)} = \frac{p_1(x)y_1(x)}{p_2(x)y_2(x)} < 1,$$

for x < b, near b; accordingly, $y_1''(x) > y_2''(x)$, near b, and

$$\int_a^b y_1''(x)dx > \int_a^b y_2''(x)dx.$$

It follows that

$$(11) y_1'(b) - y_2'(b) > y_1'(x) - y_2'(x),$$

and an integration of (11) yields the fact that

$$y_1'(b) - y_2'(b) > \frac{y_2(x) - y_1(x)}{b - x}$$

for all x < b, sufficiently near b. Let x be any fixed number near b, and we have $y'_1(b) - y'_2(b) > 0$; that is, (9) holds.

The proof of the theorem may now be completed by an appeal to the lemma. For, if c_1 and c_2 are conjugate points of x = a with respect to (1) and (2), respectively, we have, when $c_i = b$,

$$dc_1/da = 1/y_1'^2(b),$$

 $dc_2/da = 1/y_2'^2(b).$

Thus, at x = b,

$$dc_1/da > dc_2/da$$
,

and the theorem is established.

REFERENCES

- 1. Maxime Bôcher, Leçons sur les méthodes de Sturm, Gauthier-Villars, Paris, 1917.
- 2. A. M. Fink, The functional $T_0^T R$ and the zeroes of a second order linear differential equation, J. Math. Pures Appl. (9) 45 (1966), 387-394. MR 34 #7863.

- 3. ——, Comparison theorems for $\int_a^b p$ with p an admissible sub or superfunction, J. Differential Equations 5 (1969), 49-54. MR 38 #1315.
- **4.** S. B. Eliason, The integral $T\int_{T/2}^{T/2} p(t)dt$ and the boundary value problem x'' + p(t)x = 0, x(-T/2) = x(T/2) = 0, J. Differential Equations 4 (1968), 646-660. MR 38 #1313.
- 5. Walter Leighton, Some elementary Sturm theory, J. Differential Equations 4 (1969), 187-193. MR 37 #506.
 - 6. ——, Bounds for conjugate points, J. Reine Angew. Math. (to appear).

University of Missouri, Columbia, Missouri 65201