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ON DIFFERENTIABILITY OF MINIMAL SURFACES
AT A BOUNDARY POINT1

TUNC GEVECI

Abstract. Let F(z) = {u(z), v(z), w(z)}, \z\ <1, represent a

minimal surface spanning the curve T: { U(s), V(s), W(s)}, s being

the arc length. Suppose T has a tangent at a point P. Then F(z) is

differentiable at this point if U'(s), V'(s), W'(s) satisfy a Dini con-

dition at P.

Let r be a closed rectifiable Jordan curve in Euclidean 3-space, and

let F(z) = {u(z), v(z), w(z)}, defined in the disk {z:|z|gl} (z=x+iy

= reie), represent a generalized minimal surface spanning T, i.e.

(i) u(z), v(z),w(z) are harmonic in | z\ < 1 and continuous in \z\ ^ 1 ;

(ii) x, y are isothermal parameters in | z\ ^ 1, i.e.

ii2 2 2 2|i2 2 2 2

(1) I Fx | : = ux + vx + wx = I F„ I : = «„ + v„ + wy ,

(2) Fx-Fv:= uxuy + vxvv + wxwv = 0;

(iii)  F(eie), O=0<27T, is a homeomorphism of |z| =1 with T.

The components u, v, w of the vector Fare the real parts of analytic

functions in \z\ <1:

X(z) = u(z) + iu*iz),   p(z) = v(z) + iv*(z),    v(z) = w(z) + iw*(z).

Recently various theorems dealing with the boundary behavior of

conformai maps in the plane have been extended to minimal surfaces

by J. C. C. Nitsche [2], D. Kinderlehrer [l], S. E. Warschawski [3],

and other authors. Nitsche's paper contains a survey of prior work on

the boundary behavior of minimal surfaces. The purpose of this note

is to present a local result concerning differentiability of minimal sur-

faces at a given point on the boundary. In fact, our result extends a

theorem of Warschawski on conformai mapping in the plane, namely

Theorem 1 in [4].

Theorem. Suppose { U(s), V(s), W(s)} denotes the parametric repre-

sentation ofTin terms of arc length. Assume P0= { U(so), V(s0), W(s0)}

is a point of T and that T has a tangent at P0, i.e. U'(s0), V(so), W'(s0)

exist.2
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Copyright © 1971, American Mathematical Society

213



214 TUNC GEVECI [April

Suppose  that  there  exists  a  nondecreasing,   continuous function

o)(t)^0,0^t<^a(a>0), suchthat

«(0  adt < <x>
Jo t0

area*

| U'(s) - U'(so)\ áw(|í-J9|),

| V'(s) - V'(s0)\ £u(\s-So\),

| W'is) - W'(so)\ á«(|i-Jo|),

for all points  { U(s),  V(s), W(s)} in a neighborhood of Pq at which

U'(s), V'(s),W'(s) exist.3

Let F(ei»»)=Po. Then

X(z)-\(zo)
hm-= X'(zo)        (zo = «*••)
i->n       z — Zo

exists for unrestricted approach in\z\ á 1 (z9ízo),and

lim X'(z) = X'(zo)
z—»zo

for z in any Stolz angle with vertex at Zq. The same holds for ß(z) and

v(z).'

Proof. Without loss of generality we may assume l7'(s0) = 1,

F'(s0)=0, W'(so)=0. Under the conditions of the theorem War-

schawski proved the following facts (see [3, Part II, §§2-7]):

There is an interval [Ox, 02] containing 60 in its interior, a constant

a>l, and a sector 5= \z-=reiB:0<r<\, 0i<0<02} such that, if <p(Ç)

maps | f | < 1 conformally onto 5 (<p(l) = ea«) and

r                     t             r-          i        /          d\(reie)\
f = Log [(X( + a) o <p] = Log[X9 + a]        I X9 = —- J,

then limr.,! Im /(f) exists for unrestricted approach in |f| ^1 as

well as limpti/(p) =/(l). The same holds for ig=i[pe/(\e+ct)] o<p

= i-[pe/i\e+a)] and ih = i-[ve/(\t+a)]o<p = i-[ïe/il<>+ct)].,>Let<ï>iÇ)

3 It should be noted that under the hypotheses of the theorem one can show the

existence of a subarc y containing Pq in its interior and having the following property:

As ¿c(PiPi)~ where c is a constant, c> 1, As is the length of the subarc of y between

Pi, PjSt, and (PiPi) is the chordal distance.

4 The author wishes to express his indebtedness to the referee for his remark

simplifying the statement of the theorem.

6 Isothermal relations (1) and (2) are essential in obtaining these results.
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-&AÇ)+i&AÇ) (í>i = Re í>, í>2 = Im <ä?)   be  holomorphic in |f| <1.
Assume

(3) lim $(p) = *(1) = $!(1) + i3>2(l)
0)1

exists, and

(4) lim$2(f) = $2(1)
r-i

for unrestricted approach in  |f| <1. Then by a theorem of War-

schawski [5, p. 315, Theorem II] one has

(5) (i) lim — ({exp [$(<:") - $(l)]}e" dt = 1
1J-K)   7/   J 0

and

(6) (ii) lim— ({expfíiíe") - *i(l)] - 1} ¿* = 0.
,-0    T)   J o

Also, it is readily seen from the proof of this theorem that

There exists a subarc y of   |f| =1   with   midpoint  f = 1

(iii) such that limptií>(pe'í) =$(e") exists for almost all e"GY,

í>(e'') is integrable along -y, and

lim— f
>)->o   17 J0

(7)   (iv)   lim — I    | $(e») - $(1) |2 d< = 0.
>)->o   ï7 »7 o

Since <p'(f)^0, we can define log <p'(Ç) as a single valued analytic

function in |f| <1. By our remarks at the beginning, $o(f)=/(f) +

log p'(f) satisfies (3) and (4) and we can apply (5) to $o(f) to obtain

1   /* '
lim — I    {exptLogiXs^O + a) + log (p'(eu)
,-.o   j; •/ o

- Log(X9(l) + a) - log ?'(l)]}e« dt = 1

which implies

hm— J e'' dt = 1.
ij->0   T}   J 0

P'je«)

o     (X,(l) + «)*'(!)

Letting <p(e*'') =e,£ and changing the variable of integration  i<pieil)

= e'9) we readily obtain



216 TUNC GEVECI [April

i   r£
(8) lim - I    (\,(e») + a)e» dB = (\,(ea«) + a)e*<>.

I—So   £ — 00 «2 «o

Now,

"X(e«) - X(e*»)

(9)

rx(e«) - X(e«")-|

L        £-0o        J
If* 1      /•«

= —— I   X,(e*)(e*° - ei9) ¿0 -\-I   \»(e*)e* dB,
£ — 0o «2 e0 £ — 0o J «o

since X(e'9) is absolutely continuous [3]. By (8), the second term in (9)

approaches the limit X«(ei9o)ei8°, and the first term approaches 0 as

£—>0o, since

1 Ci , , , «<{ — ea"\   re ,
-r I    I *«(«*) | | e*° - e* \  dB ̂ -L I    | X,(e*) | ¿0
£ — 0o |   •' «o í — 0o     «2 90

andX^e*") is integrable. Therefore,

X(e«) - X(e*>)
(10) lim--— = A,(«*»).

{-»00 £ — 00

From (10) it follows that

X(e*) - X(e*>)
(11) Km    -^—-—- = \'(e*>)

e*»_e<»o        e» - eHo

exists.

The function (X(z) — \(ei6"))/(z — eie°) is holomorphic in |z| <1 and

by (11) and by the fact thatX(z) is continuous on | s| = 1 it is bounded

on | z| = 1. The continuity of X(z) in \z\ ^ 1 also ensures that

X(z) - X(ei(,°)

o »So
= 0[-,-r)       for |*|   < 1.

\    * - e*»    /

Therefore, by a theorem of Phragmen-Lindelöf

((X(z) - \(e*'))/(z - e*o)

is bounded in | z| < 1. Hence, by a theorem of Lindelöf,

X(z) - \(e»°)
lim   —-—- = X'(«*o)

r_e»«0 j _ gtfO

for    unrestricted    approach    in    |z|^l.    The    second     equation,
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linv«0 X'(z) =X'(z0) in any Stolz angle with vertex at z0, is a well-

known consequence of the first.

We can apply (7) to ¿|(f) and obtain

(12) lim
i

1   f»
a- I
o   r\ J o

Me") fttt)
\,(e») + a      X»(l) + a I

Also, we can apply (6) to 2/(f) and conclude that

1   f (\\Aeu) + a 2

dt = 0.

(13)

Thus,

(14)

im — I    \ U—-Í-     -lW/ = 0
-•o   7) J o   vl X«(l) + a )

lim

-f h(eu) +a\2dl^Mo

for 11] I grço and some constant Af0.

By Schwarz's inequality,

1   /*'

V Jo
ft («")(*#(!) +a)- MUiUe") +a)\   dt

(15)
\V J o

peie«) MD     |2  A111
at
■<)

olX|(e«) + «      X9(l)+a|

/ 1   /" \1/2
•Mx((l)+a|2 —J    IX^O + ^I2^    ;

(12), (14) and (15) imply

(16) lim — f ' | fiAe«) Heil) + a) - ft(l) (X,(e«) + a) |   df = 0.
,-»0    T]   J o

Since <p'ieu) is bounded in a neighborhood of f = 1, we also have

(17) lim— f'lM^OÍAíW+^-MDa^'O+a)!   | *'(e«)|   di = 0.
f-o  17 »/ o

Changing the variable of integration, as in the case of Xe(e**), one

concludes from (17) that

(18)

Thus,

1      Cl
lim- I     I /i,(e*)(X,(e*») + a) - m«^*0) CM«*) + a)| do = 0.
e->«o $ — 60 J e.
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i    rl
(X#(e*) + a) lim- I   w(e*) de

{->»» £ — 00 J 6„

i   r£
= w(e*») lim- I    (X,(e*) + a) ¿0.

i—«• £ — 0o «2 «„

1      f£
lim- j    (X,(e*) + a) ¿0 = X,(e*°) + a,
{-.«o £ — 0o J «„

and\e(eieo)+a^Q.

Therefore (19) and (20) imply

i    r{
(21) lim- I   Mt(e») dB = w (<;»•)•

{-.«„ £ — 0o J e„

From (21) one infers that

p(z) - p(e*°)
hm  -

«-«*•     z — etf0

exists for unrestricted approach in | z| ál, exactly the same way as we

showed this limit exists in the case of X(z). We deal with v(z) in a

similar fashion.

It should be noted that one may assume only the subarc 7 to be

rectifiable and obtain the same result with slight modification of our

proof.
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