ON DIFFERENTIABILITY OF MINIMAL SURFACES AT A BOUNDARY POINT¹

TUNC GEVECI

ABSTRACT. Let $F(z) = \{u(z), v(z), w(z)\}, |z| < 1$, represent a minimal surface spanning the curve $\Gamma: \{U(s), V(s), W(s)\}, s$ being the arc length. Suppose Γ has a tangent at a point P. Then F(z) is differentiable at this point if U'(s), V'(s), W'(s) satisfy a Dini condition at P.

Let Γ be a closed rectifiable Jordan curve in Euclidean 3-space, and let $F(z) = \{u(z), v(z), w(z)\}$, defined in the disk $\{z: |z| \le 1\}$ $(z = x + iy = re^{i\theta})$, represent a generalized minimal surface spanning Γ , i.e.

- (i) u(z), v(z), w(z) are harmonic in |z| < 1 and continuous in $|z| \le 1$;
- (ii) x, y are isothermal parameters in $|z| \le 1$, i.e.

$$|F_x|^2 := u_x^2 + v_x^2 + w_x^2 = |F_y|^2 := u_y^2 + v_y^2 + w_y^2,$$

(2)
$$F_x \cdot F_y := u_x u_y + v_x v_y + w_x w_y = 0;$$

(iii) $F(e^{i\theta})$, $0 \le \theta < 2\pi$, is a homeomorphism of |z| = 1 with Γ .

The components u, v, w of the vector F are the real parts of analytic functions in |z| < 1:

$$\lambda(z) = u(z) + iu^*(z), \quad \mu(z) = v(z) + iv^*(z), \quad \nu(z) = w(z) + iw^*(z).$$

Recently various theorems dealing with the boundary behavior of conformal maps in the plane have been extended to minimal surfaces by J. C. C. Nitsche [2], D. Kinderlehrer [1], S. E. Warschawski [3], and other authors. Nitsche's paper contains a survey of prior work on the boundary behavior of minimal surfaces. The purpose of this note is to present a local result concerning differentiability of minimal surfaces at a given point on the boundary. In fact, our result extends a theorem of Warschawski on conformal mapping in the plane, namely Theorem 1 in [4].

THEOREM. Suppose $\{U(s), V(s), W(s)\}\$ denotes the parametric representation of Γ in terms of arc length. Assume $P_0 = \{U(s_0), V(s_0), W(s_0)\}\$ is a point of Γ and that Γ has a tangent at P_0 , i.e. $U'(s_0), V'(s_0), W'(s_0)$ exist.²

Received by the editors May 8, 1970.

AMS 1969 subject classifications, Primary 5304, 3040, 3062.

Key words and phrases. Complex analysis, minimal surfaces, boundary behavior.

¹ Research supported in part by U. S. Air Force Grant AFOSR-68-1514.

² We assume $\{U'(s_0), V'(s_0), W'(s_0)\}$ represents the unit tangent to Γ at P_0 .

Suppose that there exists a nondecreasing, continuous function $\omega(t) \ge 0$, $0 \le t \le a$ (a > 0), such that

$$\int_0^a \frac{\omega(t)}{t} dt < \infty$$

and

$$|U'(s) - U'(s_0)| \leq \omega(|s - s_0|),$$

$$|V'(s) - V'(s_0)| \leq \omega(|s - s_0|),$$

$$|W'(s) - W'(s_0)| \leq \omega(|s - s_0|),$$

for all points $\{U(s), V(s), W(s)\}$ in a neighborhood of P_0 at which U'(s), V'(s), W'(s) exist.³

Let $F(e^{i\theta_0}) = P_0$. Then

$$\lim_{z \to z_0} \frac{\lambda(z) - \lambda(z_0)}{z - z_0} = \lambda'(z_0) \qquad (z_0 = e^{i\theta_0})$$

exists for unrestricted approach in $|z| \leq 1$ ($z \neq z_0$), and

$$\lim_{z\to z_0}\lambda'(z) = \lambda'(z_0)$$

for z in any Stolz angle with vertex at z_0 . The same holds for $\mu(z)$ and $\nu(z)$.

PROOF. Without loss of generality we may assume $U'(s_0) = 1$, $V'(s_0) = 0$, $W'(s_0) = 0$. Under the conditions of the theorem Warschawski proved the following facts (see [3, Part II, §§2-7]):

There is an interval $[\theta_1, \theta_2]$ containing θ_0 in its interior, a constant $\alpha > 1$, and a sector $S = \{z = re^{i\theta} : 0 < r < 1, \theta_1 < \theta < \theta_2\}$ such that, if $\varphi(\zeta)$ maps $|\zeta| < 1$ conformally onto $S(\varphi(1) = e^{i\theta_0})$ and

$$\tilde{f} = \operatorname{Log}\left[(\lambda_{\theta} + \alpha) \circ \varphi\right] = \operatorname{Log}\left[\tilde{\lambda}_{\theta} + \alpha\right] \qquad \left(\lambda_{\theta} = \frac{\partial \lambda(re^{i\theta})}{\partial \theta}\right),$$

then $\lim_{\zeta \to 1} \operatorname{Im} \tilde{f}(\zeta)$ exists for unrestricted approach in $|\zeta| \leq 1$ as well as $\lim_{\rho \uparrow 1} \tilde{f}(\rho) = \tilde{f}(1)$. The same holds for $i\tilde{g} = i \left[\mu_{\theta} / (\lambda_{\theta} + \alpha) \right] \circ \varphi = i \cdot \left[\tilde{\mu}_{\theta} / (\lambda_{\theta} + \alpha) \right]$ and $i\tilde{h} = i \cdot \left[\nu_{\theta} / (\lambda_{\theta} + \alpha) \right] \circ \varphi = i \cdot \left[\tilde{\nu}_{\theta} / (\lambda_{\theta} + \alpha) \right]$. Let $\Phi(\zeta)$

³ It should be noted that under the hypotheses of the theorem one can show the existence of a subarc γ containing P_0 in its interior and having the following property: $\Delta s \leq c(P_1P_2)^-$ where c is a constant, c>1, Δs is the length of the subarc of γ between P_1 , $P_2 \in \gamma$, and (P_1P_2) is the chordal distance.

⁴ The author wishes to express his indebtedness to the referee for his remark simplifying the statement of the theorem.

⁵ Isothermal relations (1) and (2) are essential in obtaining these results.

 $=\Phi_1(\zeta)+i\Phi_2(\zeta)$ ($\Phi_1=\text{Re }\Phi,\ \Phi_2=\text{Im }\Phi$) be holomorphic in $|\zeta|<1$. Assume

(3)
$$\lim_{\rho \to 1} \Phi(\rho) = \Phi(1) = \Phi_1(1) + i\Phi_2(1)$$

exists, and

(4)
$$\lim_{\xi \to 1} \Phi_2(\zeta) = \Phi_2(1)$$

for unrestricted approach in $|\zeta|$ < 1. Then by a theorem of Warschawski [5, p. 315, Theorem II] one has

(5) (i)
$$\lim_{\eta \to 0} \frac{1}{\eta} \int_0^{\eta} \left\{ \exp \left[\Phi(e^{it}) - \Phi(1) \right] \right\} e^{it} dt = 1$$

and

(6) (ii)
$$\lim_{\eta \to 0} \frac{1}{\eta} \int_0^{\eta} \left\{ \exp\left[\Phi_1(e^{it}) - \Phi_1(1)\right] - 1 \right\} dt = 0.$$

Also, it is readily seen from the proof of this theorem that

There exists a subarc $\tilde{\gamma}$ of $|\zeta| = 1$ with midpoint $\zeta = 1$ (iii) such that $\lim_{\rho \uparrow 1} \Phi(\rho e^{it}) = \Phi(e^{it})$ exists for almost all $e^{it} \in \tilde{\gamma}$, $\Phi(e^{it})$ is integrable along $\tilde{\gamma}$, and

(7) (iv)
$$\lim_{n\to 0} \frac{1}{n} \int_{0}^{n} |\Phi(e^{it}) - \Phi(1)|^2 dt = 0.$$

Since $\varphi'(\zeta) \neq 0$, we can define $\log \varphi'(\zeta)$ as a single valued analytic function in $|\zeta| < 1$. By our remarks at the beginning, $\Phi_0(\zeta) = \tilde{f}(\zeta) + \log \varphi'(\zeta)$ satisfies (3) and (4) and we can apply (5) to $\Phi_0(\zeta)$ to obtain

$$\lim_{\eta \to 0} \frac{1}{\eta} \int_0^{\eta} \left\{ \exp\left[\operatorname{Log}(\tilde{\lambda}_{\theta}(e^{it}) + \alpha) + \log \varphi'(e^{it}) - \operatorname{Log}(\tilde{\lambda}_{\theta}(1) + \alpha) - \log \varphi'(1) \right] \right\} e^{it} dt = 1$$

which implies

$$\lim_{\eta \to 0} \frac{1}{\eta} \int_0^{\eta} \frac{(\tilde{\lambda}_{\theta}(e^{it}) + \alpha)\varphi'(e^{it})}{(\tilde{\lambda}_{\theta}(1) + \alpha)\varphi'(1)} e^{it} dt = 1.$$

Letting $\varphi(e^{i\eta}) = e^{i\xi}$ and changing the variable of integration $(\varphi(e^{it}) = e^{i\theta})$ we readily obtain

(8)
$$\lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} (\lambda_{\theta}(e^{i\theta}) + \alpha) e^{i\theta} d\theta = (\lambda_{\theta}(e^{i\theta_0}) + \alpha) e^{i\theta_0}.$$

Now,

(9)
$$e^{i\theta_0} \left[\frac{\lambda(e^{i\xi}) - \lambda(e^{i\theta_0})}{\xi - \theta_0} \right] \\ = \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \lambda_{\theta}(e^{i\theta}) (e^{i\theta_0} - e^{i\theta}) \ d\theta + \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \lambda_{\theta}(e^{i\theta}) e^{i\theta} \ d\theta,$$

since $\lambda(e^{i\theta})$ is absolutely continuous [3]. By (8), the second term in (9) approaches the limit $\lambda_{\theta}(e^{i\theta_0})e^{i\theta_0}$, and the first term approaches 0 as $\xi \rightarrow \theta_0$, since

$$\frac{1}{\mid \xi - \theta_0 \mid} \int_{\theta_0}^{\xi} \mid \lambda_{\theta}(e^{i\theta}) \mid \mid e^{i\theta_0} - e^{i\theta} \mid d\theta \leq \frac{\mid e^{i\xi} - e^{i\theta_0} \mid}{\xi - \theta_0} \int_{\theta_0}^{\xi} \mid \lambda_{\theta}(e^{i\theta}) \mid d\theta$$

and $\lambda_{\theta}(e^{i\theta})$ is integrable. Therefore,

(10)
$$\lim_{\xi \to \theta_0} \frac{\lambda(e^{i\xi}) - \lambda(e^{i\theta_0})}{\xi - \theta_0} = \lambda_{\theta}(e^{i\theta_0}).$$

From (10) it follows that

(11)
$$\lim_{\substack{i\theta \to i\theta_0 \\ e^{i\theta} \to e^{i\theta_0}}} \frac{\lambda(e^{i\theta}) - \lambda(e^{i\theta_0})}{e^{i\theta} - e^{i\theta_0}} = \lambda'(e^{i\theta_0})$$

exists.

The function $(\lambda(z) - \lambda(e^{i\theta_0}))/(z - e^{i\theta_0})$ is holomorphic in |z| < 1 and by (11) and by the fact that $\lambda(z)$ is continuous on |z| = 1 it is bounded on |z| = 1. The continuity of $\lambda(z)$ in $|z| \le 1$ also ensures that

$$\frac{\lambda(z) - \lambda(e^{i\theta_0})}{z - e^{i\theta_0}} = O\left(\frac{1}{\mid z - e^{i\theta_0} \mid}\right) \quad \text{for } \mid z \mid < 1.$$

Therefore, by a theorem of Phragmén-Lindelöf

$$((\lambda(z) - \lambda(e^{i\theta_0}))/(z - e^{i\theta_0})$$

is bounded in |z| < 1. Hence, by a theorem of Lindelöf,

$$\lim_{z \to e^{i\theta_0}} \frac{\lambda(z) - \lambda(e^{i\theta_0})}{z - e^{i\theta_0}} = \lambda'(e^{i\theta_0})$$

for unrestricted approach in $|z| \le 1$. The second equation,

 $\lim_{z\to z_0} \lambda'(z) = \lambda'(z_0)$ in any Stolz angle with vertex at z_0 , is a well-known consequence of the first.

We can apply (7) to $i\tilde{g}(\zeta)$ and obtain

(12)
$$\lim_{n\to 0} \frac{1}{n} \int_0^{\pi} \left| \frac{\tilde{\mu}_{\theta}(e^{it})}{\tilde{\lambda}_{\theta}(e^{it}) + \alpha} - \frac{\tilde{\mu}_{\theta}(1)}{\tilde{\lambda}_{\theta}(1) + \alpha} \right|^2 dt = 0.$$

Also, we can apply (6) to $2\tilde{f}(\zeta)$ and conclude that

(13)
$$\lim_{n\to 0} \frac{1}{n} \int_0^{\pi} \left\{ \left| \frac{\tilde{\lambda}_{\theta}(e^{it}) + \alpha}{\tilde{\lambda}_{\theta}(1) + \alpha} \right|^2 - 1 \right\} dt = 0.$$

Thus,

(14)
$$\frac{1}{|\eta|} \int_0^{\eta} |\tilde{\lambda}_{\theta}(e^{it}) + \alpha|^2 dt \leq M_0$$

for $|\eta| \leq \eta_0$ and some constant M_0 .

By Schwarz's inequality,

$$\frac{1}{\eta} \int_{0}^{\eta} \left| \tilde{\mu}_{\theta}(e^{it}) (\tilde{\lambda}_{\theta}(1) + \alpha) - \tilde{\mu}_{\theta}(1) (\tilde{\lambda}_{\theta}(e^{it}) + \alpha) \right| dt$$

$$\leq \left(\frac{1}{\eta} \int_{0}^{\eta} \left| \frac{\tilde{\mu}_{\theta}(e^{it})}{\tilde{\lambda}_{\theta}(e^{it}) + \alpha} - \frac{\tilde{\mu}_{\theta}(1)}{\tilde{\lambda}_{\theta}(1) + \alpha} \right|^{2} dt \right)^{1/2}$$

$$\cdot \left(\left| \tilde{\lambda}_{\theta}(1) + \alpha \right|^{2} \cdot \frac{1}{\eta} \int_{0}^{\eta} \left| \tilde{\lambda}_{\theta}(e^{it}) + \alpha \right|^{2} dt \right)^{1/2};$$

(12), (14) and (15) imply

(16)
$$\lim_{n\to 0} \frac{1}{n} \int_0^{\eta} \left| \tilde{\mu}_{\theta}(e^{it})(\tilde{\lambda}_{\theta}(1) + \alpha) - \tilde{\mu}_{\theta}(1)(\tilde{\lambda}_{\theta}(e^{it}) + \alpha) \right| dt = 0.$$

Since $\varphi'(e^{it})$ is bounded in a neighborhood of $\zeta = 1$, we also have

(17)
$$\lim_{\eta \to 0} \frac{1}{\eta} \int_0^{\eta} \left| \widetilde{\mu}_{\theta}(e^{it}) (\widetilde{\lambda}_{\theta}(1) + \alpha) - \widetilde{\mu}_{\theta}(1) (\widetilde{\lambda}_{\theta}(e^{it}) + \alpha) \right| \left| \phi'(e^{it}) \right| dt = 0.$$

Changing the variable of integration, as in the case of $\lambda_{\theta}(e^{i\theta})$, one concludes from (17) that

(18)
$$\lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \left| \mu_{\theta}(e^{i\theta}) (\lambda_{\theta}(e^{i\theta_0}) + \alpha) - \mu_{\theta}(e^{i\theta_0}) (\lambda_{\theta}(e^{i\theta}) + \alpha) \right| d\theta = 0.$$

Thus,

(19)
$$(\lambda_{\theta}(e^{i\theta_0}) + \alpha) \lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \mu_{\theta}(e^{i\theta}) d\theta$$
$$= \mu_{\theta}(e^{i\theta_0}) \lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} (\lambda_{\theta}(e^{i\theta}) + \alpha) d\theta.$$

By (10)

(20)
$$\lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} (\lambda_{\theta}(e^{i\theta}) + \alpha) d\theta = \lambda_{\theta}(e^{i\theta_0}) + \alpha,$$

and $\lambda_{\theta}(e^{i\theta_0}) + \alpha \neq 0$.

Therefore (19) and (20) imply

(21)
$$\lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \mu_{\theta}(e^{i\theta}) d\theta = \mu_{\theta}(e^{i\theta_0}).$$

From (21) one infers that

$$\lim_{z \to e^{i\theta_0}} \frac{\mu(z) - \mu(e^{i\theta_0})}{z - e^{i\theta_0}}$$

exists for unrestricted approach in $|z| \le 1$, exactly the same way as we showed this limit exists in the case of $\lambda(z)$. We deal with $\nu(z)$ in a similar fashion.

It should be noted that one may assume only the subarc γ to be rectifiable and obtain the same result with slight modification of our proof.

BIBLIOGRAPHY

- 1. D. Kinderlehrer, The boundary regularity of minimal surfaces, Ann. Scuola Norm. Sup. Pisa 23 (1969), 711-744.
- 2. J. C. C. Nitsche, The boundary behavior of minimal surfaces. Kellogg's theorem and branch points on the boundary, Invent. Math. 8 (1969), 313-333.
- 3. S. E. Warschawski, Boundary derivatives of minimal surfaces, Arch. Rational Mech. Anal. 38 (1970), 241-256.
- 4. ——, On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620. MR 24 #A1374.
- 5. ——, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), 310-340.

University of California at San Diego, La Jolla, California 92037