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PRODUCTS OF SUc-COMPACT SPACES1

VICTOR SAKS AND R. M. STEPHENSON, JR.

Abstract. Some results are given on the closure under suitably

restricted products of a class of spaces similar to one considered by

Z. Frolik and, more recently, by N. Noble. An answer is given to

the following question of Gulden, Fleischman, and Weston: Does

there exist 9)i>No and an SDî-compact space X such that some

subset A of X of cardinality âaJ? is contained in no compact subset

of X? It is shown that for every W. ä ^o there is a topological group

which has this property.

1. Preliminaries. Throughout this paper all hypothesized cardinals

and all hypothesized spaces will be infinite and Ti, respectively.

A filter base will be called open if the sets belonging to it are open,

and the adherence of a filter base ÍF on a space X, D {P| FE&}, will

be denoted by adx î or ad 5\ The cardinality of a set A will be de-

noted by | AI. [CH ] indicates the Continuum Hypothesis is being

assumed.

We are grateful to W. W. Comfort for several useful suggestions

concerning this paper. The terminology "weakly-SOÎ-No-compact" is

due to the referee.

2. Products of SDÎ-compact spaces. In [9] Noble studies properties

of Ê*, the family of spaces in which every infinite subset meets some

compact subset in an infinite set.

We shall call a space X strongly Wl-compact provided that it has

the property: for every filter base ionl with |sf| =3D?, there is a

compact subset K of X such that if\K is a filter base. A space is

strongly N0-compact if and only if it belongs to S*. (By a strongly

countably compact space certain other authors, including J. Keesling

and N. Noble, mean instead a space which has the property that

below is called Ro-bounded.)

As usual, a space X will be called Wi-compact provided that it has
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one of the equivalent properties: if 11 is an open cover of X and

1111 aïft, then 11 has a finite subcover; for every filter base $ on X

such that |ff| g 9ft, ad <5?±0.
In [6] a space X is said to be SSI-bounded if for every subset A of

X with | A | ^9ft, there is a compact subset K of X such that A C.K.

The authors of [6] observe that an 9ft-bounded space is 9ft-com-

pact. Other easily checked facts are the following: an 3ft-bounded

space is strongly 9ft-compact; a strongly 3ft-compact space is 9ft-

compact; and the property 9ft-bounded (strongly 9ft-compact,

9ft-compact) is closed hereditary. They note that an example of

Novak [lO] is countably compact but not No-bounded, and they ask

if there is an 9ft-compact space, 9ft > No, which is not aft-bounded. In

§4 it will be shown that for every (regular) 9ft è N0 there is an 9ft-com-

pact topological group which is not (strongly 9ft-compact) 9ft-

bounded. We can show, though, that the concepts 9ft-bounded and

9ft-compact are more closely related than one might suspect.

Theorem 2.1. Let X be a regular space which is SSI-compact, and

suppose that SI is any cardinal for which 2^ :S9ft. Then X is SSI-bounded.

Proof. It is known (and easy to prove) that a regular space is

compact if every open filter base has an adherent point.

Suppose that A EX with | A | ^Si, and let ï be any open filter base

on J. The filter base g = 3=1-4 satisfies | g| ^2*^9)?, so 0^adz g

= adz 3\
Remark 2.2. The following examples show that, for 9ft = N0, the

concepts äft-bounded, strongly 9ft-compact, and 9ft-compact cover

distinct classes. The first two are strongly 9ft-compact but not

9ft-bounded. The third is 9ft-compact but not strongly Sfft-compact.

(i) Let Kx=ßN—{x}, where xEßN-N.  Frolík  [3]  notes that

(ii) Mary Ellen Rudin [ll] has shown that there exists [CH] a

separable, noncompact, sequentially compact space.

(iii) Frolík [2] (and others) have constructed infinite countably

compact spaces in which every compact subset is finite.

We now obtain two product theorems. The first is, for 3ft = X0, due

to Noble [9]. The second is a strengthening of the following theorem

of A. H. Stone [12]: The product of not more than fc$i sequentially

compact spaces is countably compact.

Theorem 2.3. The product of an 'SSI-compact space and a strongly

Wl-compact space is SR-compact.

The proof is immediate if one recalls that the product of a compact

space and an 9ft-compact space is Eft-compact ([2], [5]).
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While SDÎ-boundedness (strong uDî-compactness) is obviously pro-

ductive (finitely productive), the authors do not know, for 2Ii>i<o,

if either of the properties äft-compact and strongly Sic-compact is

productive.

In [2] and [3] Frolik shows (i) there exists ÎFCË* such that

j £F| = c but n^S*. and (») there exists SC<5* such that |g| =2C

and Ü9 's not countably compact (g= {Kx\xEßN—N}). His proof

of 4.2.3 in [3] shows that 6* is closed under countable products.

Theorem 2.4. The product of not more than Xi spaces in Ë* is

countably compact.

Proof. Let X = JJ Xa where a runs over the set of all countable

ordinals, and where each XaE&*- Given a sequence {x(w)| nEN} of

points of X, we produce a cluster point. Let S be the set of all infinite

subsets of N.

A proof about the same as A. H. Stone's proof of [12, Theorem 5.5]

shows that there exist sets sia)ES for each a, such that

(1) Ka= {xain) I nEs(a)}~ is compact;

(2) whenever b<a, s(a)—s(b) is finite.

Let K be the compact set JJ Ka, and suppose that no point of K

is a cluster point of {x(n)}. Then there are a finite number of basic

open sets U(i) such that KEU = U {U(i)} and for some j,

UC\ {x(n)\ nEN and n^j} = 0. But consider the set F of all b for

which some pr&(t/(í))9aXt. F is finite, say, F= {bi, ■ ■ ■ , bk} where

each bi<bi+i. By (2) there exists pEs(bk) such that for every nEs(bk),

n^p implies that nEs(bi), ¿ = 1, • • • , k — 1. By (1) there is, for any

such n, a point t(n)EK which satisfies tAn)=Xb(n) for every bEF.

Since each t(n) belongs to some U(i), and since, clearly, t(n)EU(i)

implies that x(n)EU(i), it follows that U contains {x(n)\nEs(bk)

and n = p}. This is a contradiction.

3. Products of weakly-SfJc-Xo-compact spaces. We shall call a space

X weakly-3R-^o-compact provided that one of the following equivalent

conditions holds: if "U is an open cover of X such that | 111 =2JÎ, then

there is a finite subfamily V of 'U such that X = [U°ü]~; if $ is an open

filter base on X such that [ £F| =2)?, then ad 5^0.

Weakly-Ko-i^o-compactness is the same as A. H. Stone's feeble

compactness [12] (and, for completely regular spaces, is the same as

pseudocompactness). At the other end of the spectrum are the weakly-

i^o-compact spaces—the spaces on which all open filter bases have

nonempty adherence. In [l] Frolik introduced weakly-9)?-i<o-compact

spaces (under a different name) and obtained several interesting

analogues of known theorems about weakly- fri0-com pact spaces.



282 VICTOR SAKS AND R. M. STEPHENSON, JR. [April

Although the property weakly-N0-compact is productive [7], it is

well known that there exist two pseudocompact (in fact, countably

compact) completely regular spaces whose product is not pseudo-

compact.

The results of this section show that if the Generalized Continuum

Hypothesis holds, then for every regular cardinal 9ft, there exist

weakly-9ft-N0-compact completely regular spaces Mx and M2 such

that MxXMi is not weakIy-9ft-N0-compact. Our construction will be

similar to ones due to Frolík [2], Novák [lO], and Terasaka [4, 9.15].

For the remainder of this section, 9ft will be an arbitrary but fixed

regular cardinal which has the following property: for every 9l<9ft,

2* ̂  9ft. X will be a discrete space with | X \ = SSI. For VEX, we shall

write V* for the clopen set Cl^x V. Y will denote {xG/âA^I for some

VEX, | V\ <9ft and xEV*}, and Z will denote {xEßX\ior every

VEX,xEV* implies | V\ =9ft}.
A subset D of ßX will be called strongly discrete if there exist sets

VdEX, dED, so that dEVd, and for all d, eED, dj¿e implies that
vdr\v. = 0.

Lemma 3.1. Let D be a strongly discrete set such that \D\ = 9ft. Denote

by D' the set of all points zEZC\D such that for every subset E of D, if

\E\ <SSl, thenz<£Ë~. Then \D'\ =2$st.

Proof. An argument like the one on p. 91 of [4] shows that D=ßD.

Thus \D\ = 22^ [4, p. 130].
Well-order DVJX as {x0|aG9ftj and for each &G9ft let S(b)

= {xa\ag,b}. Since 9ft is regular, D-D'CU {S(b)~\ bESSl}. Because

9î<9ft=^2îi^9W,each|5(&)-| =2*". Thus | D-D'\ £2SK.
Remark 3.2. The following example shows that in Lemma 3.1, for

9ft = c, strongly discrete cannot be replaced by discrete. It is known

(see [8] or [13]) that [CH] there is a one-to-one mapping/ of wi into

ßN—N and a point pEßN—N—f(ui) such that the net/ converges

to p and /(wi) is a discrete subset of ßN. Thus each nonisolated point

of [/(wi)]_— {p} is a limit point of a countable subset of/(«i). It is

also known that for any infinite discrete space X, ßX — X contains a

copy of ßN.

In [14] Grant Woods has independently obtained a result which,

for the case 9ft = St+, generalizes our next lemma.

Lemma 3.3. The space Y is Si-bounded for every SKSSX-

Proof. Let CC F with \C\ =9?. For each cEC there is a set VCEX

with cEV* and | Vc\ <9ft. Then V = V{Vc}EX and | F| <9ft, so
CCF*CF.
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Lemma 3.4. There exist disjoint subsets Pi and P2 of Z so that when-

ever D and D' are as in the hypothesis of Lemma 3.1, then D'C\Pi

*0*D'r\p2.

Proof. Let £F= {D\ \D\ = SJc and D is strongly discrete}. Then

| SF| ̂ 22m. Since for each £>£EF, | D'\ = 222\ one can construct Pu P2

by induction.

Theorem 3.5. Let M.= YXJPi, i = \, 2.

(i) Each Mi is weakly-'Sfi-i&o-compact.

(ii) MiXM2 is not weakly-W-^o-compact.

Proof, (i). It suffices to show that an open filter base £F on X with

Iff I áSJc has an adherent point.

If [ SF] <91c, select xFEF for each FES. Then jï?)- is a compact

subset of Y by Lemma 3.3, so S has an adherent point y E YE MiC\M2.

Suppose that Sic = | íf| and well-order ï as {F„| a G Sic}. As above,

we can, for each d£SJ?, select ydE Y so that y^GÓ {[Fo]_| a^d}.

Case 1. There is a set VEXwith | F| < SU so that the net {y^aES)?}

is frequently in V*. Then V*E Y and there must be a point yEV*

which is a cluster point of {ya}- The point y would be an adherent

point of 3\

Case 2. We suppose that for every set FCA^ such that | V\ <Wl,

the net {y„} is eventually in Y—V*.

Then an inductive argument shows that there exist a nondecreasing

mapping/ of Sic into itself and sets F/(0) EX for each a, such that

(1)  | V>(.,| <W;
(2) y/MeC¡
(3) aûfia);
(4) whenever a?¿b, l/}wr\7/(i,)=0.

Let D= {y/(a)|aG3Ic}. Then |d| = SU and D is strongly discrete, so

D'f~\Pi9£0, i=l and i = 2. Any point in DT\Pi is an adherent point

of S in M¿.

(ii). Well-order X as {xa|a£3ft}, and for each bEWl let F6

= {(*<», #a)|ô^a}. Then 3 = {F&| &GSD?} is an open filter base on

MiXM2 and [€F[ = SU, but 0 = ad SF, because any adherent point of

S would have to be of the form (z, z) for some z£Z.

4. SR-compact spaces and groups. In this section we consider

various ways to construct groups and completely regular spaces that

are (i) noncompact and Sft-bounded and (ii) S)î-compact but not

strongly Sic-compact.

4.1. In [6] a point poî a space Y is called an tyl-point of Fprovided

that for every family S of open subsets of Y, if | s\ ^Slî and pE^S,
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then flif is a neighborhood of p. According to Theorem 2 of [6], if Y

is a subspace of a compact space X and if each point of X\ Y is an

9ft-point of X, then Y is 9ft-bounded. The following are two ways in

which one can use this result to obtain spaces of the type (i).

(a) Given a nonlimit ordinal a>0, the space wa with the usual

topology is an Na_!-bounded but not weakly-Na-N0-compact space in

which each point has a fundamental system of neighborhoods of

cardinality ^ N0_i.

(b) Let G be a nonempty set of F-points (i.e., N0-points) [CH] of

ßN— TV and take Y = ßN—N—G. Since the non-F-points form a dense

subset of ßN—N, Y is N0-bounded but not weakly-c-N0-almost com-

pact.

The next result shows that the method in (b) cannot be used for

nonmeasurable cardinals ^c.

Theorem 4.2. Let X be a discrete space with \ X\ =9ft. If SSI is non-

measurable and "^c, then no point of ßX — X is an SSI-point of ßX — X.

Proof. Let us first observe that (1) no point of ßX—X is a F-point

of the space ßX, and (2) if p is an 9ft-point of ßX—X, then for every

VEX,pEV*=*\ V\ >N0.
(1) Since X is realcompact, for each pEßX — X there is a con-

tinuous real valued function / defined on ßX such that f(p) = 0 and

f(X) >0. On the other hand, if p is a F-point of a space F, then for

every continuous real valued function/defined on F, there is a neigh-

borhood of p in F on which/ is constant.

(2) If | F| =N0 and pEV*, then {p} is an intersection of c clopen

subsets of ßX — X.

Next, suppose that there exists an 9ft-point of ßX — X, say, p.

Using (2), we will show that p is a F-point of ßX, thereby contra-

dicting (1).

Let {F*|mG^V} be sets containing p. By hypothesis there is a

subset V of X so that pEV* and V*-XEO{ (V*-X)\ nEN}.

Now every set V—Vn must be finite since each F„ — XZ^V*— X.

Let W denote \J{V-Vn\nEN}. Then W is countable and pEW*

= (V-W)*VW*. By (2), pE(V-W)*. Since V-WEVn for every

n, (F-IF)*Cn{F„*|.
We do not know if there exists pEßX — X such that for every

subsets of ßX-X-{p},\A\ ^9ft=>¿<£Z.
4.3. Let St be a cardinal and 9ft its successor. The following space,

C, similar to ones due to H. H. Corson, I. Glicksberg, L. S. Pontryagin

and J. Kister, is 9î-bounded but is not, in general, 9ft-compact.
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For each ordinal number a < Sic choose a compact space Xa and fix

a point paEXa- Let C be the set of all points x in the product space

n^asuch that | {a|xa^^a}| =^-

In case each Xa is also a topological group with identity pa, then

C is a topological group.

We next give a technique which can be used, for each SU, to obtain

spaces that are SU-compact but not SU-bounded.

Lemma 4.4. Let S be an W-compact space, and suppose that A is a

subset of S with | A | :S2 . Then there is a subset A' of S with A EA'

and \A'\ ^2m such that for every filter base S on A, if \s\ = SU, then

AT\ad Sj¿0.

Proof. Let T= {s\ S is a filter base on A, \ s\ = SU, and for every

FES, l^l^ SDî}. Since the number of subsets of A with = SU-points
is = (2^ = 2s", T is a collection of families S, with | SFI g SU, con-

structed by choosing |íf| elements from a set with ^2 elements.

Thus |T| =2*".

For each SET choose p(S)EadsS, and let A'= {p(S)\ SET}.

Then ¡A'\ £2m. BecauseSis Fi,eachad{ \a} } = {a},so^.Cv4'.

Let g be any filter base on A such that | g] = SU. That A T\ad g ̂  0

can be seen as follows. For each GEg choose x(G)EG, and let K

= {x(G)|GGg} and S = $\K. Since S is a filter base and |g|, |ü:|

^SU, we have SET and so 0^^'nad SEA'C\ad g.

Theorem 4.5. Let S be an SU-compact Hausdorff space containing a

subset A such that ¡A | = SU, and \A\ =22m. Then there is a set A EPES

such that \P\ =2 and P is Wl-compact but not 'SSI-bounded. Further-

more, if S is a topological group, then P can also be taken to be a topo-

logical group.

Proof. We use "'" as in Lemma 4.4. Let Na be the successor of SU.

Put Po = A and for each ordinal number c define Pc= [U {P&| b<c} ]',

and take P = U {Pc|c<coa}. Then an inductive argument shows that

each |Pc|,c<wOI is =2^,80 |P| =2^.

To see that P is SU-compact, consider any filter base ÍFonP for

which \s\ =SU. Then there is a subset L of P such that | L\ =SU and

s\ L is a filter base. Because ¡Aa is regular, LEPc for some c <(*)„• Thus

0^Pc+1P\ad s\LE&dp S.
Next, suppose that there is a compact set KEP such that AEK.

Then we have |i<r| = |P| =2^ and 2a9K= | J| á | K\. On the other

hand, since S is Hausdorff, it must also be true that K = K.

In order to see that the last statement of the theorem holds, all
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one need do is alter the above definition of P by taking each Pc to be

the group generated by [U {Pb\ b<c] ]'. Then P is the union of a

chain of groups and hence is a group.

Remark 4.6. In [2, Lemma 2.9] Frolík constructs a countably

compact completely regular space P such that |P| =c. For the case

A=N and S = ßN, the construction for the second statement in

Theorem 4.5 is essentially the same as Frolik's.

Theorem 4.7. Let Sit be a regular cardinal. Let S be an SSt-compacl

Hausdorff space containing a subset A such that | A | = SSt, and for every

EEA, LE| =9ft=>|I| =22W. Then there is a set AEPES such that
\p\ i£2 and P is SSt-compact but not strongly SSt-compact. If S is a

topological group, then P can be taken to be one also.

Proof. Let P be the space constructed in the proof of Theorem 4.5.

Well-order 4 as {a,

by the sets   {a,¡\d^c >

cG9ft}, and let 3= be the filter base generated

cG9ft. Then |œ| =9ft, so if F is strongly

9ft-compact, there must be a compact set K~EP such that 5=1 K is a

filter base. Let F>= {¿G9ft| a,¡EK\. Since 9ft is regular and D is co-

final in 9ft, 9ft = |P|. Thus ] KC\A\ = 9ft and 2sTO= | [KT\A}-\ S|X|
= \K\ whereas I F| =2^.

Example 4.8. Let X be any completely regular space containing a

dense subset A such that |^| = 9ft and |ßX\ = 22ÜR. Take 5 to be ßX

or any compact group containing ßX (e.g. take 5 to be CD where

C= the circle group and D = the set of continuous mappings of X into

C). Then | Cls A \ = \ Cl/sx A | = 22ÎDÎ, so the hypothesis of Theorem 4.5

is satisfied. Two examples of this sort are the following:

(i) Let A = Q and X = Q or R (see [4]).

(ii) Let A —X = a discrete space of cardinality 9ft.

In connection with (ii), recall that if C is any compact zero dimen-

sional space with base (B, then the rule

f(c)B = 1        if c G B,

= 0       if c <£ B,

defines a homeomorphism of C into the product space {o, 1 }œ. Thus

ßA is embedded in the topological group 5 = {0, 1}2Tl.

Example 4.9. Let 9ft be a regular cardinal and let A and 5 be as

in (ii). Then for every EEA, C1M E=ßE, so ¡CI« E\ =22'BI. By
Theorem 4.7 the space F is 9ft-compact but not strongly 9ft-compact.

Example 4.10. For each ordinal number cE2w let Xc be a compact

group or Hausdorff space such that \XC\ "^2 and Xc has a dense sub-
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set of cardinality ^SU. If one takes for 5 the product space JJ Xc

and for A any dense subset of S of cardinality SU, then the hypothesis

of Theorem 4.5 is satisfied.

As mentioned earlier, we do not know, for SU>No> if there exist

SU-compact spaces whose product is not SU-compact; however, for

regular spaces we can settle the question for certain cardinals SU and,

assuming the Generalized Continuum Hypothesis, for all singular

cardinals SU.

Theorem 4.11. Let W be a singular cardinal such that 2^ = SU for

every Se < SU, and suppose that X is a regular topological space which is

a product of SU-compact spaces. Then X is Sft-compact.

Proof. It follows from Theorem 2.1 that for every Sc<SU, all

factor spaces and, hence, X are Si-bounded. Let ÍF= {Fm|wzGSU} be

a filter base on X. For each mESSl,

Gm = n{[Fn]-\nem}^0.

Let C be any cofinal subset of SU such that | C| < SU. Then

0 ^r\{Gc\cEC} = adS.
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