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PRODUCTS OF It-COMPACT SPACES!

VICTOR SAKS AND R. M. STEPHENSON, JR.

ABSTRACT. Some results are given on the closure under suitably
restricted products of a class of spaces similar to one considered by
Z. Frolik and, more recently, by N. Noble. An answer is given to
the following question of Gulden, Fleischman, and Weston: Does
there exist M>Ny and an IM-compact space X such that some
subset 4 of X of cardinality =R is contained in no compact subset
of X? It is shown that for every It =R there is a topological group
which has this property.

1. Preliminaries. Throughout this paper all hypothesized cardinals
and all hypothesized spaces will be infinite and T3, respectively.

A filter base will be called open if the sets belonging to it are open,
and the adherence of a filter base & on a space X, N{F| FEF}, will
be denoted by adx § or ad §. The cardinality of a set 4 will be de-
noted by IA[ [CH] indicates the Continuum Hypothesis is being
assumed.

We are grateful to W. W. Comfort for several useful suggestions
concerning this paper. The terminology “weakly-I-R,-compact” is
due to the referee.

2. Products of 9¢-compact spaces. In [9] Noble studies properties
of ©*, the family of spaces in which every infinite subset meets some
compact subset in an infinite set.

We shall call a space X strongly M-compact provided that it has
the property: for every filter base ¥ on X with || <M, there is a
compact subset K of X such that §|K is a filter base. A space is
strongly N¢-compact if and only if it belongs to €*. (By a strongly
countably compact space certain other authors, including J. Keesling
and N. Noble, mean instead a space which has the property that
below is called N-bounded.)

As usual, a space X will be called IM-compact provided that it has
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one of the equivalent properties: if U is an open cover of X and
|<u| <M, then U has a finite subcover; for every filter base F on X
such that |F| <M, ad F= .

In [6] a space X is said to be M-bounded if for every subset 4 of
X with | 4] <M, there is a compact subset K of X such that 4 CK.

The authors of [6] observe that an IM-bounded space is M-com-
pact. Other easily checked facts are the following: an It-bounded
space is strongly I-compact; a strongly IM-compact space is M-
compact; and the property IMM-bounded (strongly IM-compact,
M-compact) is closed hereditary. They note that an example of
Novék [10] is countably compact but not N¢-bounded, and they ask
if there is an IMN-compact space, M > N, which is not M-bounded. In
§4 it will be shown that for every (regular) Mt = N, there is an M-com-
pact topological group which is not (strongly I-compact) IN-
bounded. We can show, though, that the concepts I-bounded and
IM-compact are more closely related than one might suspect.

THEOREM 2.1. Let X be a regular space which is M-compact, and
suppose that N is any cardinal for which 2% <M. Then X is N-bounded.

Proor. It is known (and easy to prove) that a regular space is
compact if every open filter base has an adherent point.

Suppose that A CX with I AI <N, and let § be any open filter base
on A. The filter base g=5|A satisfies |9| <2" <M, so F#adz G
=adz F.

REMARK 2.2. The following examples show that, for I =N,, the
concepts M-bounded, strongly M-compact, and M-compact cover
distinct classes. The first two are strongly I-compact but not
IM-bounded. The third is IM-compact but not strongly IM-compact.

(i) Let K,=BN— {x}, where x&BN—N. Frolik [3] notes that
K,c¢*.

(ii) Mary Ellen Rudin [11] has shown that there exists [CH] a
separable, noncompact, sequentially compact space.

(iii) Frolik [2] (and others) have constructed infinite countably
compact spaces in which every compact subset is finite.

We now obtain two product theorems. The first is, for I =Ny, due
to Noble [9]. The second is a strengthening of the following theorem
of A. H. Stone [12]: The product of not more than N, sequentially
compact spaces is countably compact.

THEOREM 2.3. The product of an M-compact space and a strongly
M-compact space is M-compact.

The proof is immediate if one recalls that the product of a compact
space and an M-compact space is M-compact ([2], [5])-
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While M-boundedness (strong IM-compactness) is obviously pro-
ductive (finitely productive), the authors do not know, for It >N,
if either of the properties M-compact and strongly IM-compact is
productive.

In [2] and [3] Frolik shows (i) there exists $CG* such that
|| =c but J]FEE*, and (ii) there exists GCE* such that |g| =2°
and J]g is not countably compact (§= {K,I xEBN—N}). His proof
of 4.2.3 in [3] shows that €* is closed under countable products.

THEOREM 2.4. The product of not more than N, spaces in C* is
countably compact.

Proor. Let X = [] X, where a runs over the set of all countable
ordinals, and where each X,&EG*. Given a sequence {x(n)|nEN} of
points of X, we produce a cluster point. Let S be the set of all infinite
subsets of N.

A proof about the same as A. H. Stone’s proof of [12, Theorem 5.5]
shows that there exist sets s(a) €S for each a, such that

1) K,= {xa(n)l n€s(a) }— is compact;

(2) whenever b<a, s(a) —s(b) is finite.

Let K be the compact set || K., and suppose that no point of K
is a cluster point of {x(n)}. Then there are a finite number of basic
open sets U(i) such that KCU=U{U@G)} and for some j,
unN {x(n)| n&EN and ngj} = ¢¥. But consider the set F of all b for
which some pry(U(z)) #X,. F is finite, say, F= {bl, N bk} where
each b;<b:;1. By (2) there exists p E5(bx) such that for every n Es(by),
n=p implies that nEs(b;), 1=1, - - -, k—1. By (1) there is, for any
such », a point ¢(n) EK which satisfies &,(n) =x3(n) for every bEF.
Since each ¢(n) belongs to some U(z), and since, clearly, t(rn) E U(7)
implies that x(n) E U(7), it follows that U contains {x(n)l nEs(bx)
and n=p}. Thisis a contradiction.

3. Products of weakly-IN-No-compact spaces. We shall call a space
X weakly-I-Vo-compact provided that one of the following equivalent
conditions holds: if U is an open cover of X such that | u| <M, then
there is a finite subfamily U of U such that X = [UV]~; if F is an open
filter base on X such that |F| <9, then ad §= &.

Weakly-N-No-compactness is the same as A. H. Stone’s feeble
compactness [12] (and, for completely regular spaces, is the same as
pseudocompactness). At the other end of the spectrum are the weakly-
No-compact spaces—the spaces on which all open filter bases have
nonempty adherence. In [1] Frolik introduced weakly--N,-compact
spaces (under a different name) and obtained several interesting
analogues of known theorems about weakly-Nj-compact spaces.
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Although the property weakly-N,-compact is productive [7], it is
well known that there exist two pseudocompact (in fact, countably
compact) completely regular spaces whose product is not pseudo-
compact.

The results of this section show that if the Generalized Continuum
Hypothesis holds, then for every regular cardinal IR, there exist
weakly-M-Ny-compact completely regular spaces M; and M, such
that M X M, is not weakly-I-N,-compact. Our construction will be
similar to ones due to Frolik [2], Novik [10], and Terasaka [4, 9.15].

For the remainder of this section, I will be an arbitrary but fixed
regular cardinal which has the following property: for every Mt <R,
2% <. X will be a discrete space with [X ] =IN. For VCX, we shall
write V* for the clopen set Clgx V. ¥ will denote {xEBX|for some
VCX, | V] <M and x€V*}, and Z will denote {xEBX|for every
VCX,xE€ V*implies | V| =M}.

A subset D of BX will be called strongly discrete if there exist sets
VaCX, dED, so that d& V;, and for all d, e€D, d#e implies that
VaNVe,=¢.

LEMMA 3.1. Let D be a strongly discrete set such that | D| =9R. Denote
by D’ the set of all points 2EZND such that for every subset E of D, if
| E| <9, then z&EE. Then | D’| =277,

PROOF. An argument like the one on p. 91 of [4] shows that D=4D.
Thus | D| =22 [4, p. 130].

Well-order DUX as {x.]a€EM} and for each b&M let S(b)
= {xs]a<b}. Since M is regular, D—D'CU {S(b)~|bEM}. Because
N<M=2" <M, each | S(b)~| <2™. Thus | D—D’| <2™.

REeEMARK 3.2. The following example shows that in Lemma 3.1, for
M =c, strongly discrete cannot be replaced by discrete. It is known
(see [8] or [13]) that [CH] there is a one-to-one mapping f of w; into
BN —N and a point pEBN—N—f(w) such that the net f converges
to p and f(w,) is a discrete subset of BN. Thus each nonisolated point
of [f(w)]-— {p} is a limit point of a countable subset of f(w:). It is
also known that for any infinite discrete space X, 8X — X contains a
copy of BN.

In [14] Grant Woods has independently obtained a result which,
for the case M =N+, generalizes our next lemma.

LeMMA 3.3. The space Y is N-bounded for every M <IN.

ProoF. Let CC Y with | C| <RN. For each cEC there is a set V.CX
with ¢€ V¥ and | V.| <. Then V=U{V.}CX and | V| <M, so
CCV*CY.



1971 PRODUCTS OF m-COMPACT SPACES 283

LEMMA 3.4. There exist disjoint subsets Py and P, of Z so that when-
ever D and D' are as in the hypothesis of Lemma 3.1, then D'MP,
#= F#=D'MP,.

ProoF. Let §={D| |D| =M and D is strongly discrete}. Then
| 5| =2?™. Since for each DES, | D’| =2*™, one can construct Py, P,
by induction.

THEOREM 3.5. Let M;=YUP,;, =1, 2.
(i) Each M; is weakly-I-No-compact.
(ii) M1 XM, is not weakly-M-No-compact.

Proor. (i). It suffices to show that an open filter base § on X with
| §| <M has an adherent point.

If |F| <M, select xrE F for each FEF. Then {xr}~ is a compact
subset of ¥ by Lemma 3.3, so § has an adherent point y & Y C MM\ M,.

Suppose that M= |F| and well-order F as { F.|a&IM}. As above,
we can, for each dEM, select y.E Y so that ya€N{[F.]-|a=d}.

Casel. Thereisaset VCX with | V| <9 so that the net {y.| a €I}
is frequently in V*. Then V*CY and there must be a point y&E V*
which is a cluster point of {y.}. The point ¥ would be an adherent
point of &.

Case 2. We suppose that for every set VCX such that | V| <3¢,
the net {ya.} is eventually in ¥— V*.

Then an inductive argument shows that there exist a nondecreasing
mapping f of M into itself and sets V) CX for each ¢, such that

1) | Viw| <M

2) Y@ € Vi

(3) a=f(a);

(4) whenever a #b, V,(..)f\ Vf(b) = Q.

Let D= {y;w|aEM}. Then | D| =M and D is strongly discrete, so
D'N\P;# F,1=1 and ¢=2. Any point in D’ P; is an adherent point
of §Fin M.

(ii). Well-order X as {xal aEED?}, and for each bEM let Fp
= {(%e, %z)|b=a}. Then F={F|b€EM} is an open filter base on
My X M, and IEF! =, but & =ad F, because any adherent point of
& would have to be of the form (g, 2) for some zEZ.

4. M-compact spaces and groups. In this section we consider
various ways to construct groups and completely regular spaces that
are (i) noncompact and IM-bounded and (ii) M-compact but not
strongly IM-compact.

4.1. In [6] a point p of a space Y is called an M-point of ¥ provided
that for every family ¥ of open subsets of Y, if [SF l <M and pENT,



284 VICTOR SAKS AND R. M. STEPHENSON, JR. [April

then NF is a neighborhood of p. According to Theorem 2 of [6], if ¥
is a subspace of a compact space X and if each point of X\ Y is an
M-point of X, then Y is M-bounded. The following are two ways in
which one can use this result to obtain spaces of the type (i).

(a) Given a nonlimit ordinal ¢>0, the space w, with the usual
topology is an N,_;-bounded but not weakly-R,-Nj-compact space in
which each point has a fundamental system of neighborhoods of
cardinality N,_;.

(b) Let G be a nonempty set of P-points (i.e., No-points) [CH] of
BN — N and take ¥ =8N — N —G. Since the non-P-points form a dense
subset of BN—N, Y is Ny-bounded but not weakly-c-No-almost com-
pact.

The next result shows that the method in (b) cannot be used for
nonmeasurable cardinals =¢.

THEOREM 4.2. Let X be a discrete space with | X| =I. If I is non-
measurable and Zc, then no point of X —X is an M-point of X —X.

ProoOF. Let us first observe that (1) no point of X — X is a P-point
of the space 8X, and (2) if p is an M-point of BX — X, then for every
VCX,pEV*=| V| >N,

(1) Since X is realcompact, for each pEBX —X there is a con-
tinuous real valued function f defined on X such that f(p) =0 and
f(X)>0. On the other hand, if p is a P-point of a space T, then for
every continuous real valued function f defined on T, there is a neigh-
borhood of p in T on which f is constant.

) If I V[ =Ny and pE V*, then {p} is an intersection of ¢ clopen
subsets of X —X.

Next, suppose that there exists an IM-point of BX —X, say, p.
Using (2), we will show that p is a P-point of X, thereby contra-
dicting (1).

Let {V,’f InEN } be sets containing p. By hypothesis there is a
subset V of X so that pEV* and V*—XCN{(V)—X)|nEN}.
Now every set V—V, must be finite since each Vy—XDV*—X.
Let W denote U { V— V,,| nEN}. Then W is countable and pE V*
=(V-W)*UW*. By (2), p&(V—W)*. Since V—-WCV, for every
n, (V=W)*CN{vs}.

We do not know if there exists p&BX —X such that for every
subset 4 of BX —X — {p}, | 4| S M=p 4.

4.3. Let N be a cardinal and M its successor. The following space,
C, similar to ones due to H. H. Corson, I. Glicksberg, L. S. Pontryagin
and J. Kister, is Nt-bounded but is not, in general, IMN-compact.
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For each ordinal number a <INt choose a compact space X, and fix
a point p,&EX,. Let C be the set of all points x in the product space
1 X. such that | {a|xa=pa}| =N

In case each X, is also a topological group with identity pa, then
C is a topological group.

We next give a technique which can be used, for each I, to obtain
spaces that are IM-compact but not M-bounded.

LEMMA 4.4. Let S be an M-compact space, and suppose that A is a
subset of S with | A| <2™. Then there is a subset A’ of S with ACA’
and | A’| 2™ such that for every filter base F on A, if |F| <M, then
A’'Nad §# .

PRrOOF. Let T= {§|5 is a filter base on 4, |F| <IN, and for every
FeEg, Fiméim . Since the number of subsets of 4 with <It-points
is =(2")™ =2", T is a collection of families &, with |SF <IN, con-
structed by choosing |F| elements from a set with <2™ elements.
Thus | T| <2™.

For each F&ET choose p(F)Eads F, and let 4'= {p(iF)|€FET}.
Then | 4’| £2™. Because Sis Ty, eachad { {a}} ={a},s0 4 C4".

Let G be any filter base on 4 such that I gl =M. That A’Nad G= &
can be seen as follows. For each GEG choose x(G) EG, and let K
= {x(G)|GEG} and F=g| K. Since F is a filter base and |g|, | K|
<IN, we have FET and so F#=A4'Nad FCA'Nad G.

TuEOREM 4.5. Let S be an M-compact Hausdor[ff space containing a
subset A such thatgLA | =M, and | 4| =22™. Then thereisa set ACPCS
such that | P| 2™ and P is M-compact but not M-bounded. Further-
more, if S is a topological group, then P can also be taken to be a topo-
logical group.

Proor. We use “’” as in Lemma 4.4. Let N, be the successor of .
Put Py=4 and for each ordinal number ¢ define P,= [U {Pbl b <c} 1,
and take P=U{P,|c<ws}. Then an inductive argument shows that
each IPcl , €<Wg, is §2m, SO IPI <™

To see that P is IN-compact, consider any filter base § on P for
which || 9. Then there is a subset L of P such that | L| <M and
F | L is a filter base. Because N, is regular, L C P, for some ¢ <w,. Thus
& #P.uNad 5| LCadp 5.

Next, suppose that there is a compact set K CP such that 4 CK.
Then we have |K| =|P| £2™ and 2 =|Z| | K|. On the other
hand, since S is Hausdorff, it must also be true that K =K.

In order to see that the last statement of the theorem holds, all
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one need do is alter the above definition of P by taking each P, to be
the group generated by [U{P;|6<c}]’. Then P is the union of a
chain of groups and hence is a group.

REMARK 4.6. In [2, Lemma 2.9] Frolik constructs a countably
compact completely regular space P such that ]P| =¢. For the case
A=N and S=BN, the construction for the second statement in
Theorem 4.5 is essentially the same as Frolik’s.

THEOREM 4.7. Let I be a regular cardinal. Let S be an M-compact
Hausdorff space containing a subset A such that | A [ =, and for every
ECA, zlnEl =M=|E| =2™. Then there is a set ACPCS such that
| P| 2™ and P is M-compact but not strongly M-compact. If S is a
topological group, then P can be taken to be one also.

ProoF. Let P be the space constructed in the proof of Theorem 4.5.

Well-order 4 as {a.|cEM}, and let F be the filter base generated
by the sets {adl d=cf, cEM. Then |€f| =, so if P is strongly
M-compact, there must be a compact set K CP such that & ] Kisa
filter base. Let D= {dESIR a4sEK §. Since I is regular and D is co-
final in M, M=|D|. Thus | KNA| =M and 2" =| [KN4]-| =| K|
=| K| whereas | P| <2™.

ExAMPLE 4.8. Let X be any completely regular space containing a
dense subset 4 such that | 4| =9% and |BX| =22™. Take S to be BX
or any compact group containing BX (e.g. take S to be CP? where
C = the circle group and D = the set of continuous mappings of X into
C). Then | Clg A| =| Clgx 4| =22, so the hypothesis of Theorem 4.5
is satisfied. Two examples of this sort are the following:

(i) Let A=Q and X=Q or R (see [4]).

(ii) Let 4 =X =a discrete space of cardinality .

In connection with (ii), recall that if C is any compact zero dimen-
sional space with base ®, then the rule

flos =1 if ¢ € B,
=0 ifcé B,

defines a homeomorphism of C into the product space {0, 1 }‘B. Thus
B4 is embedded in the topological group S= {0, 1} s
ExaMPLE 4.9. Let I be a regular cardinal and let 4 and S be as
in (ii). Then for every ECA4, Clgs E=E, so |Cls E| =2?". By
Theorem 4.7 the space P is IN-compact but not strongly M-compact.
ExAMPLE 4.10. For each ordinal number ¢E€2® let X, be a compact
group or Hausdorff space such that | X.| 22 and X, has a dense sub-
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set of cardinality <9%. If one takes for S the product space ][] X.
and for 4 any dense subset of S of cardinality I, then the hypothesis
of Theorem 4.5 is satisfied.

As mentioned earlier, we do not know, for IM>N,, if there exist
IN-compact spaces whose product is not I-compact; however, for
regular spaces we can settle the question for certain cardinals 9% and,
assuming the Generalized Continuum Hypothesis, for all singular
cardinals 9.

THEOREM 4.11. Let M be a singular cardinal such that 2X <M for
every M <M, and suppose that X is a regular topological space which 1is
a product of M-compact spaces. Then X is M-compact.

Proor. It follows from Theorem 2.1 that for every 1<, all
factor spaces and, hence, X are R-bounded. Let §= { F|mEM} be
a filter base on X. For each m& M,

Gn = N{[F.]"| n = m}=2.
Let C be any cofinal subset of ¢ such that | C| <. Then
& # N{G.| c€ C} = ads.
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