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THE PARABOLA THEOREM FOR CONTINUED
FRACTIONS OVER A VECTOR SPACE

f. a. roach

Abstract. In a recent paper, we defined a type of reciprocal for

points of a real inner product space and considered continued frac-

tions based on this reciprocal. These continued fractions were

analogous to ordinary continued fractions in which each partial

numerator is unity. In the present paper, we develop a type of con-

tinued fraction which is analogous to an ordinary continued frac-

tion of the form in which each partial denominator is unity. The

main result is a convergence theorem for such continued fractions

which is a direct extension of a theorem by W. T. Scott and H. S.

Wall (the Parabola Theorem).

1. Introduction. In [2] we introduced the notion of a continued

fraction over a vector space. Following the notation used there, we let

5 denote a real inner product space and u denote a point of S with unit

norm. If 0 is a point of S, we denote by z the point 2((z, u))u—z and

by 1/z the point z/||z||2. (We assume that there is adjoined to 5 a

"point at infinity" with the usual conventions: 1/0 = 00, l/oo =0, etc.)

Making use of this type of reciprocal, we considered continued frac-

tions of the form

1        1        1
(1.1) bo + —     —     —      ••••

bx + b2 + b3 +

In [3], Scott and Wall gave an important convergence theorem (the

Parabola Theorem) for continued fractions of the type in which each

partial denominator is unity. The purpose of this paper is to define a

continued fraction over S which is analogous to one of this form and

to give a theorem which is a direct extension of the Parabola The-

orem. This is accomplished by a generalization of linear fractional

transformations based on the observation that F is a linear fractional

transformation if and only if there exists a finite sequence b0, bx,

b-z, ■ • ■ , b„, with each term a complex number, such that for every

complex number z, T(z) is

1        1 1
(1.2) *. + ■

bx + bt + +bn + z
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Before proceeding, we call attention to two facts: (1) If u is the unit

vector with first coordinate 1 in either E2, El, or Es, then \/z reduces

to the ordinary reciprocal for complex numbers, quaternions, or

Cayley numbers, respectively. Thus, the results of this paper, as well

as those of [2], hold true in those settings. (2) Every two dimensional

subspace of 5 which contains u may be regarded as being the complex

plane with u corresponding to unity insofar as the transformations s

and 1/z are concerned.

2. Extended linear fractional transformation. Suppose that T is

an ordinary linear fractional transformation. Then there exist com-

plex numbers a, b, c, and d such that ad — bc = \ and T(z)

= (az+b)/(cz-\-d) for every complex number z. If c^O, and in (1.2) we

take m = 2, b0 = (a — l)/c, bi = c, and b2 = (d — \)/c, it reduces to T(z). If

c = 0, then a ^ 0 and

11 1 111

I/a + ~^a + (1 - b)/a + T + ^1 + 1 + z

reduces to T(z). Of course, if each one of b0, bi, • ■ ■ , b„ is a complex

number, (1.2) is a linear fractional transformation. These observa-

tions motivate the following consideration.

Let M denote the set of all transformations T defined on 5 such

that for some sequence bo, bi, • • • , bn, with each term a point of S,

T(z) is given by (1.2) for every point z of 5. Clearly M is closed under

composition and since l/(l/z) = z, we see that each element of M has

an inverse in M. In fact, the inverse of (1.2) is

— bn-i + H-bo + z

Thus we have the following result.

Theorem 1.  The set M forms a group under composition.

The theorem below, which is analogous to the familiar statement

about circles and lines, proves to be quite useful.

Theorem 2. Let L denote the set of all hyperplanes and spheres in S.

If T is a transformation in M and K an element of L, then T(K) is in L.

Since the elements of M are composed of transformations of the

form b+z and 1/z, we need only consider transformations of this type.

Clearly, if T is a translation, i.e. of the form 6+z, and K is in L, then

T(K) is in L. Thus, it suffices to show that if K is in L, then Í/K—■

the image of K under 1/z—is in L.
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Suppose that K is a hyperplane which contains 0. Then for some

point F^O, K is the set of all points z such that ||z—P|| =||z+P||.

Making use of the properties of the inner product and the fact that

((x, y)) = ((x, y)), we see that this implies that

||l/z-l/P|[ =||l/z+l/P||.

Thus, Í/K is a hyperplane. (We assume that oo belongs to every

hyperplane.)

Now suppose that c is a point and r is a positive number. We will

show that when 11 z — c\ | = r, then either

(2.1) ||1A- 1A|| - ||l/z||

or else

(2.2) ||lA+Cy(r2-||c||2)|| =r/|r2-||C||2|

accordingly as ||c|| is or is not r.

Consider first the case in which ||c|| = r. If ||z — c|| =r, we have that

||z||2-2((z, c)) =0 and therefore,

((c, c))/\\c\\* - 2((z, c))/(\\z\\2\\c\\2) = 0.

This implies that ((1/c, 1/c))-2((l/z, l/c))=0 and hence, (2.1).

Keeping in mind that l/(l/z) =z, we have not only that if K is a

sphere containing 0, then Í/K is a hyperplane, but also that if K is a

hyperplane which does not contain 0, then Í/K is a sphere.

Now suppose that 11c|| =^?-. From ||z —c|| =r, we obtain ((z, z))

— 2((z, c)) + ((c, c)) =r2 and hence

4((z, c))2/\\z\\2 - 4((z, c))((z, c))/\\z\\2 - 4((z, c)) + \\z + c\\ = r2.

This expression implies that ||(l/z) [2((z,c)) — ||z||2]— c|| =r, which

may be reduced to (2.2).

3. An extension of the Parabola Theorem. In order to simplify the

statement and proof of the theorem of this section, we introduce some

additional notation. For every point a of S, we denote the point

1 1 1

— 1/a + a + (—i/a) — u

by a2. In case S = E2, Ei, or £8 with u the unit vector having first

coordinate 1, the expression

1 1 1

-l/a+ a +(-l/a) - b
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reduces to the product aba for complex numbers, quaternions, or

Cayley numbers, respectively. In view of this, we would expect that

if w is a unit vector such that ((u, v)) =0 and x and y are numbers, then

(xu+yv)2 = (x2— y2)u + (2xy)v. It is not difficult to establish that this

is indeed the case.

Theorem 3. Suppose that S is complete, for n = 1, 2, 3, ■ ■ ■ , anis a

point of S such that \\a*\\ —((a\, u)) ^\/2;and

(3.1) -a„      (i/an) - (I/O - z

— u        if an = 0,

for every point z. Then lim TiT2 • • ■ Tn(u) exists and is finite as n—>=°

if and only if either (i) some a„ = 0 or else (ii) for « = 1,2, 3, • • • ,«„5^0

and 12 dn diverges where ¿i=l and dn+i=l/(d'i\\an\\) for n = \, 2,

3, • • • .

Before giving a proof of this theorem, we call attention to the case

in which S = E2 and m = (1, 0). Here, for each n, Tn(z) reduces to

1/(1+0^) and the condition ||tXn|| — ((<2n. m))S?1/2 becomes \al\

— Re(a2)^l/2. The conclusion concerning lim TiT2 ■ • • Tn(u) is

equivalent to the statement that the continued fraction

2 2

1       ai      a2

T + T + T +'

converges if and only if (i) or (ii) holds true. Thus we see that this

theorem includes the Parabola Theorem of Scott and Wall [3].

Throughout the following discussion, let V denote the set of all

points z of 5 such that ||z — u\\ £1. If ii is a sphere or a spherical ball,

we denote the radius of K by Rad(Ä'). Suppose that «isa positive

integer and S' is a two dimensional subspace of 5 which contains

both an and u. If we denote ST\ V by V and regard S' as being the

complex plane with u corresponding to unity, we see that Tn(V) is a

subset of V since Tn(z) reduces to 1/(1+0^) and ||oä|| —((«», «))

^1/2. With the aid of Theorem 2, we see that Tn(V) is either the

point u or a spherical ball accordingly as an is or is not 0. In either

case Tn(V) is a subset of V. It is not difficult to see that if somea„ = 0,

then lim TiT2 ■ ■ ■ Tn(u) exists and is finite.

Now suppose that for w = l, 2, 3, • ■ • , a^O and ^ dn diverges.

For each n, let Vn denote T{T2 • ■ ■ Tn(V) and r„ denote the radius of

Vn. We have already seen that V\ is a subset of V and by a similar
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argument, one may show that if K is a spherical ball which is a subset

of V, then so also is Tn(K). Therefore, for re = 1, 2, 3, • • -, Fn+i is a

subset of Vn. In order to establish that lim FiF2 • • • F„(w) exists and

is finite, it suffices to show that lim(r„) =0. We will accomplish this

by showing that r\, r2, r3, ■ ■ ■ is bounded by a certain sequence which

has limit 0.

First, suppose that K is a spherical ball with center c and radius

r and that it is a subset of V. Let B denote the boundary of K (i.e.

the sphere ||z — c|| =r) and let « be a positive integer. For each point

z, let T(z) =1/(1/a — 1/a2 — z). We consider two cases: (1) T(B) is a

hyperplane and (2) T(B) is a sphere.

In either case, we know that l/(— an + T(B)) is a sphere and that

its radius is the same as the radius of Tn(K). In case (1), with the aid

of (2.1), we find that the point of F(F) nearest 0 is 1/(2F) where

F = l/F(c). Hence, the point of — a„ + F(23) which is nearest 0 has

norm

((-C„,F/||F||)) + 1/(2||P||).

But since in case (1) ||p|| =r, one half of this positive number is

r/(\\an\\2{\/\\an\\2 - 2ü\/än,P))])

which reduces to

r/(||an||2[||F-lA„||2-r2]).

Upon adding ||P||2 — r2 to the denominator of this expression and

factoring, we have

(3.2) Rad Tn(K) = r/(||an||2[||l/¿ + c|f - r]).

In case (2), with the aid of (2.2), we find that

RadFn(2T)=r|   ||ç||2-r2|/|   Wo, + ani\\Q\\2 - r2)\\2 - r21

where Q= — 1/F(c). Making use of the properties of the inner prod-

uct, this expression may be reduced to (3.2). Thus, in either case, (3.2)

is an expression for the radius of Tn(K).

Consider the function/ defined by/(x) = Hx, an)) for every point

x such that ||x|| =||c|| and ((x, u)) = ((c, u)). Let S' denote a two

dimensional subspace of 5 which contains both a„ and u and let x'

denote a point of the domain of/ which lies in S'. For every point x

in the domain oif,f(x) is either f(x'),f(x'), or else between/(x') and

fix'). (This is easily seen from the fact that J ((x, an))\ ^\\x\\ ||a„||

= ||c|| ||a„|| while one of fix') and fix') is ||c|[ ||a„|| and the other

is — ||c|| |!a„||.) From this, we see that if Rix) denotes
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r/(||a„||2[||l/al + x||2-r2])

for every point x in the domain of/, then either R(x') ^ Tn(K) or else

R(x') ^ Tn(K). We will now proceed to name bounds on r\t r2, r3, • ■ ■ .

For every point a of S, let

1 1
S(a; z) = 1/<H-       if a ^ 0,

(3.3) -a+l/a- 1/a2 - z

= u       if a = 0.

Of course if a=a„, this transformation is Tn. Let ci denote ai and

Si(z) denote S(ci; z). Then Rad Si(V) =Rad Ti(F). Let S' denote a

two dimensional subspace of 5 which contains both ci and u and let

c denote a point of S' such that ||c|| =||ß2|| and ((ti «)) = (fe, «))• Let

c2 denote core accordingly as Rad SiS(c; V) is or is not greater than

Rad SiS(c; V). We then have that

Rad SiSAV) = Rad TiT2(V)

where S2(z) is S(c2; z). Now let c' denote a point of S' such that ||c'||

= ||o3|| and ((c', m)) =((a3, u)). Let c3 depote c' of c' accordingly as

Rad S2S(c'; V) is or is not greater than Rad S2S(c'; V) and let S3(z)

denote S(c3; z). Notice that one of S(ci; S2S3(V)) and S(ci; S2S3(V))

has a radius which is not less than the radius of TiT2T3(V). But

S2S3( V) is a subset of 52( V) and we have that

Rad S(ci\ S2(V)) = Rad5(c'i;52(7)).

Thus we see that

RadS^SsdO ^ Rad TiT2T3(V).

This process may be continued. Thus, there exists a sequence Ci, c2,

c3, ■ ■ ■  with each term a point of S' and a sequence Si, S2, S3, • • •

such that, for n — l, 2, 3, ■ ■ ■ , \\cn\\ =||a„||, ((c„, u))=((an, u)), and

RadSiS2 ■ ■ ■ Sn(V) ^ Rad T{T2 ■ ■ ■ Tn(V).

If we regard S' as being the complex plane with u corresponding to

unity, we have that | c?,| - Re(c2) ^ 1/2. Let V denote ST\ V. Paydon

and Wall have shown in [l ] that

lim [Rad SiS2 ■ • ■ S„(V')] = 0        as n -^ oo.

From this it follows that lim [Rad SiS2 • ■ ■ Sn(V)] =0 and hence we

conclude that when (ii) of Theorem 3 holds true, lim TiT2 ■ ■ • Tn(u)

exists and is finite.
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We will now establish the necessity of the divergence of ^á„.

Suppose that for re = l, 2, 3, • • • , a^O and 23 a*„ converges. Let

bx = u and, for re = 1, 2, 3, • • • , let

(3.4) bn+X =
-bn + -b^x + +  -bx + TxT2

It is not difficult to see that for re = l, 2, 3, • • -,

1        1 1

bx + b2 + + bn+1

Tniu)

(3.5) TxT2 Tn(u)

We will now show that, for re = l, 2, 3, • • • , d„ = ||6„||. Of course

¿i = ||ii|| and we may establish directly that rfa = [j&Ä11. Suppose that re

is a positive integer greater than 2. From (3.4), ||&„|| =l/||x—y|| where

1 1

and

-6„-2   +

1

+ -bx + TxTi

1

Tn-x(u)

1

-è„_2  +        +   -bx + TxT2 F„_2(«)

Since u, —a„_i, l/a„_i, and l/a2^, must all lie in some two dimen-

sional subspace of S which contains u, we have that F„_i(re)

= l/(M+a^_j). Expanding the expressions FiF2 • • • F„_i(m) and

F1F2 ■ • • F„_2(m) by means of (3.1) and replacing u by \/u in the

second of these, we see that y terminates with \/u and x terminates

with \/(u + \/(\/a2n-x))- In [2] we developed the following formula

(equation (2.5))

|(±  1   ...   i)_(±  1   ...   ±)
\\Cx + C2   + +  c„/        \Cx + c2   + + Cn+i/

(3.6)

where
DnD n+X

Dk = \\ck\\ \\ck-x + 1/c» Cl +

1

c2   +

1

+  ck

Applying this formula to the expression 1/||«—y||, we obtain

(3.7) ||i,|| = AB
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A =   l/a„_i   \\u + a„_

bn.2 +
1 1

— ô„_3 + + TnT2 ■ ■ ■ rn_i(w)

and

B = \\u\\ ||l/an-2 — l/a«-2 — u\

1
— i„_2 +

— ¿>„_3 + + 7\r2 • • • Tn-2(u)

Notice that the last factor of B is l/||ô„_i||. Rearranging the factors

of AB, we have that

||6„|| = i/(||M Ik'-ill)/.
We will now show that/= 1. The last factor of A may be written as

W-bn- + +   TiT2

_J_)
Tn_2(l/(u+ al_,)) )

\-bn-3 + +  TiT2 ■ ■ ■ r„_2(0)/|+ +  T.

which, with the aid of (3.6), we may reduce to Í/CD where

C = ||m + a„_i

and

-bn-Z +
1

— ô„_4 + + TiT2 ■ ■ ■ TVi(tt)

D = ||l/c„_2 — l/an-2|| || — an-2 + l/(l/an-2 — l/a»-2)

1 1
-K

-Ô„_4  + +   TlT2 ■ ■ ■ Tr^-Au)

(In case a„_2 = u, we take the product of the first two factors of D to

be 1.) The product of the second through next to last factors of A is

C. The next to last factor of B may be written as

(-L-\ —bn-i +      + TiT2 ■ ■ ■ rB_3(i/c « + <->)))

f— ••• —-—)l\-ô„_4+ + TiT2- ■ ■ r„_3(o)/|
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and then reduced to 1/22 F where

145

E = ||« + an

and

-bn
1

—6„_e + + TxT2 F„_2(«)

F =   l/a„_3 - l/an

-*n-4 +

1

.(«)-i_i + +   TxTt- ■ ■

Thus we have that f = G/(DEF) where

G = ||l/a„_2 — 1/fln-s — m|| || — o„_2 + l/(l/a„_2 — l/an_2 — «)|j

1 1
■bn-i +

— b„-5 + +   TxT2 • ■ ■ F„_2(m)

However, the product of the first two factors of G is ||w+a„_2||/||a,,_j||,

while the product of the first two factors of D is l/||aB_J|. From this

|a„_21)22. The product of the first and third factors

a„_3| . If we assume that \\b„-i\\ =l/(||a„_3|| ||6B-s||)

and notice that the last factor of F is l/||&„_j|| while the last factor of

D is 1/||&B_2||, we see that f=l/MN where

we see that G = (1/

of D is||w+aB_3|¡/|

M + an-3\\ ||l/a„_4 — l/a„_4 — l/(« + aB_3)||

— ÔB-4
1

-ôB_6 + +  FiF2 • • • F„_3(«)

and

N  =  ||l/a„_4  -  l/fln-4  -«||

1
- bn-b +

-6B_6   + + TxT1¿2  •   •   • r„_4(«)

If we compare MN and AB, we conclude that by induction it follows

that/=l.
Thus, we have that for re = l, 2, 3, ■ • • , ||èB+i|| =l/(||aB|| ||Z>„||), so

that ¿n = ||in||. Theorem 1 of [2] states that if 2||&»|| converges, then

1        1        1

Ti+T* + b3+ '

diverges. This concludes the proof of Theorem 3.



146 F. A. ROACH

References

1. J. F. Paydon and H. S. Wall, The continued fraction as a sequence of linear

transformations, Duke Math. J. 9 (1942), 360-372. MR 3, 297.
2. F. A. Roach, Continued fractions over an inner product space, Proc. Amer. Math.

Soc. 24 (1970), 576-582.
3. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions. Trans.

Amer. Math. Soc. 47 (1940), 155-172. MR 1, 217.

University of Georgia, Athens, Georgia 30601


