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ON IDEMPOTENT, COMMUTATIVE, AND
NONASSOCIATIVE GROUPOIDS

G. GRÄTZER AND R. PADMANABHAN1

Abstract. For an algebra IS.—(A; F) and for «a2, let />„(2l)

denote the number of essentially n-ary polynomials of 21. J. Dudek

has shown that if 21 is an idempotent and nonassociative groupoid

then pnÇiï.) äs for all n>2. In this paper this result is improved for

the commutative case to show that for such groupoids 21, pn(M)

&i(2n-(-l)") for all ne2 (Theorem 1) and that this is the best

possible result. Those groupoids for which this lower bound is

attained are completely characterized. In fact, the relevant result

proved below is much stronger (Theorem 3). From these and other

known results it is deduced that the sequence (0, 0, 1, 3) has the

minimal extension property.

1. Introduction. Let 21 = {A ; o ) be a groupoid, that is, A is a non-

void set and o is a binary operation on A. Functions composed from

x0, • • • , x„_i using o are called w-ary polynomials; an w-ary poly-

nomial is essentially n-ary if it depends on all n variables. For «è 2 let

p»(2I) denote the number of essentially M-ary polynomials.

J. Dudek [l] proved that £»(21) ^w in any idempotent groupoid

other than the semilattice and the diagonal algebra. Idempotent

groupoids with pnCñ) =n are given in J. Plonka [8]; these are neces-

sarily noncommutative.

In this paper we investigate />n(2I) for idempotent and commutative

groupoids. If, in addition, o is also associative, then £„(21) = 1 for all

n\\2 (and 21 is a semilattice). Therefore, to get something interesting

we have to assume that 21 is nonassociative. To provide an example,

let (G; + ) be an abelian group satisfying 3x = 0 and define

(1) x oy = 2x+2y.

Then ® = (G; o) is an idempotent, commutative, and nonassociative

groupoid, and

(2) P»(@)=!(2--(-l)»).
Our main result states that this number is minimal, and equality is

achieved only by the groupoid given in this example.
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In §2 we prove that pn(®) is a lower-bound for any £n(2I). Group-

oids in which equality is attained are described in §3.

An application of these results is given in §4.

Notation. We use the standard notation, see [2]. For an algebra

31 let P„(2l) denote the set of essentially w-ary polynomials of 3Í. As

in [4], for a groupoid §1 = (A ; o) and for £GPn(2I) we define

(3) pMi = p(x0, ■ ■ ■ ,Xi ox„, ■ ■ • ,x„_i),

(4) pSn = p(x0, ■ ■ ■ ,x„_i)ox„.

For n è 2 let q„ denote the number 1(2" — ( — 1 )n).

We note that the q„ satisfiy the following two recursive relations:

(5) 2„ = 2ffB_1-(-l)»,

(6) qn = q„-x+2q„-2-

2. The lower-bound.

Theorem 1. Let 21 be an idempotent, commutative, and nonassocia-

tivegroupoid. Then,forn^2,£n(2l)^qn.

Proof. pn(tl)stqn is obvious for w = 2. Since xo (y oz), y o (zox),

2 o (x o y) are essentially ternary (see [6]) and pairwise distinct (the

equality of any two would imply the associativity of o) we obtain

pt(tl)&q».
Assume that pm(K) =Sqm has been proved for all m<n, where n is an

integer ^4. By Lemmas 3 and 4 of [4]

(7) Pn-xMn-2QPn,

(8) \Pn-xMn_2\=\Pn-x\,

(9) (Pn_25n_2)5n_!c:pB,

(10) (P„-2S„-l)Sn-2ÇPn,

(11) I (Pn-îSn-ï) Sn—X \   ~ \ (Pn-2o'n-l)On-2 |   = | Pn-2 | •
The subsets of P„ given in (7), (9), and (10) are pairwise disjoint.

Indeed, if

(12) íG(Pn-25„_2)5„_1n(Pn_25„_1)5„_2,

then p = (r o x„_2) o x„_i = (50 x„_i) o xn-2 for some r, s G Pn-2. Setting

Xo = • • • = x„_3 this yields (x0 o x„_2) o xn-x = (*o o x„_i) o x„_2, con-

tradicting the nonassociativity of o. H pE\Pn-iMn-ir\(Pn-2Sn-i)Sn-i,

then

p = r(x0, • ■ • , x„_2 o x„_i) = (s(xB, • • • , xn_3) o x„_2) o x„_i.

Thus x„_2 and x„_i are symmetric in p, implying that p satisfies (12), a

contradiction. The sets given in (7) and (10) are disjoint for the same

reason. Hence, by (8) and (11),

(13) Pn(2I)è£n-l(2i)+2/>B_2(2I).
Since ^n-i(SI) ^qn-i and pn-2^qn-2, (6) and (13) yield £„(21) ̂ qn,

completing the proof of Theorem 1.
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3. Idempotent reduct of groups. Let (G; +) be an abelian group

of exponent 3. The groupoid ® — (G; o), where o is defined by (1) is

called the idempotent reduct of (G; + ). This terminology is justified by

the following result of J. Plonka [7]: the polynomials of ® are

exactly the idempotent polynomials of (G; +).

Hence, Pn(®) consists of all functions of the form

n-l

y, «<*«,        a¡ = 1 or 2,      23 a» — 1 (mod 3).
<=o

A simple computation (which is used in verifying this statement)

shows that a polynomial given in this form belongs to Pn-iMn-2 if

a„_2=a„-i; it belongs to (P„_25„_i)5„_2 if a„_2 = 2, a„_i = l.

Thus, in view of the results of the last section,

(14) pn(®)=pn-i(®)+2pn_2(&).

Since p2(®) = 1, PA®) =3, (6) and (14) yield pn(®)=qn.

Theorem 2. Let ® be the idempotent reduct of an abelian group of

exponent 3. Then pn(®) = qnfor all n ^ 2.

This formula was first obtained by T. J. Dickson and B. Wölk.2

4. The characterization theorem. In this section we shall prove

the converse of Theorem 2. In fact the result we prove is much

stronger:

Theorem 3. Let 21 = {A; o) be an idempotent groupoid satisfying

pnCñ) = ?n for n — 2, 3, and 4. Then a binary operation + can be defined

on A such that

(i)  (A ; + ) is an abelian group of exponent 3 ;

(ii) for alia, bEA, we have a ob = 2a-\-2b.

The group (A; +)is determined by 21 up to isomorphism.

Proof. First we verify that the identity

(15) (xoy)oy = x

holds in 21. Obviously,

(16) (xoy) oyGJx.y, xoy}.
Assume that

(17) (xoy) oy=y,

then (x o y) o ((x o y) o y) = (x o y) o y, and so x o y =y, contradicting

¿>2(2I) = 1. Now assume that

(18) (xoy)oy = xoy.

We claim that (18) implies that ¿>3(SI) ^6. Indeed, consider the six

polynomials    /1 = (x o y) o z,     f2 = (y o z) o x,     /3 = (z o x) o y,     fi

2 Oral communication.
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= (x o y) o (y o z), /6 = (y o z) o (z o x), /6 = (z o x) o (x o y). We al-

ready noted that/i, f2, and /ä are essentially ternary. The same is true

oí ft, ft and/e. Indeed, if/4, or/6, or/6does not depend on one variable

we set the other two equal, and obtain that u ov does not depend on

u, a contradiction.

We have already noted that/1,/2 and/3 are pairwise distinct. If two

of/4,/s and/e are equal, then one of them, hence all, are symmetric.

But if fi is symmetric, then

a o (b o c) = (a o (b o c)) o (b o c)    by (18)

= (ao(bo c)) o (bo (bo c))    by (18)

= (aob) o (b o c)    (by the symmetry of/4),

thus a o (b o c) is symmetric in a and c, which is associativity. For the

same reason if/1 equals one of ft, ft, ft, it has to be ft- So let/i =/s, then

/1 = (aob) o c = ((a o b) o c) o (a o b)

= ((a o b) o c) o ((a o b) o b) = (aob) o(b oc)    (by /1 = ft)

= /4,

implying associativity. Similarly, f2 and /3 cannot equal any oi ft, ft,

and ft. This completes the proof of p3(2I) ^ 6. Since we assumed that

p3(2í) =3, this shows that (18) is false. Thus (17) and (18) have been

eliminated and by (16), only (15) is left. This completes the proof of

the claim that (15) holds in 21.

Now let us verify two more identities:

(19) (x o y) o z= (x o z) o (yo z),

(20) (x o y) o (z o /) = (y o z) o (x o /).

As noted above, fi=f\ and/i=/6 both imply associativity. Since

¿>3(2I) = 3, and so Ps(2I) = t/1,/2,/»}, we conclude that/i=/6, which is

(19).
It is proved in [9] that if o is commutative, idempotent, and non-

associative, then />4(2I) ̂  5, and

P*($) 2 \((xoy)oz)o t, ((y oz)ot)o x, ((z o t) o x) o y,

((t o x) o y) o z, (x o y) o (z o /)},

where the five polynomials listed are all distinct. Since we assumed

that £4(21) =5 we obtain equality in (21). Therefore (y o z) o (x o t)

must equal one of these five polynomials; it cannot equal any of the

first four because they cannot be symmetric in y, z and in x, t. Thus

follows (20).

Now fix an element eEA and define

(22) x-f y= (x oy) o e.
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Then
(23) x+y=y+x,

since o is commutative.

(24) x+e = x,

since x+e=(x o e) o e = xby (15).

(25) (x+x)+x = e,

since (x+x)+x= (((x ox) oe) ox) o« = eoe = e by (15).

Now compute:

(x + y) + z= ((ix o y) o e) o z) o e

— (((x oy) o e) oe) o (zo e)    by (19)

= (x o y) o (z o e)    by (15)

= (x o e) o (y o z)    by (20).

Thus, (x+y)+z is symmetric in y and z, and + is commutative,

hence

(26) (x+y)+z = x+(y+z).

Thus, by (22) —(26), (A; +) is an abelian group of exponent three,

and

2x + 2y = (x + x) + (y + y) = (x o x) o e + (y o y) o e

= (x o e) + (y o e) = ((x oe)o(joe))oe

= ((x o y) o e) o e    by (19)

= x o y   by (15).

These prove statements (i) and (ii) of Theorem 3. The last statement

of Theorem 3 follows from the observation that the choice of zero

determines + ; indeed, if eG^4 is chosen to be the zero of (A ; +), and

x o y = 2x + 2y, then (x o y) o z = x+y+2z, hence x+y = (x o y) o e as

in (22).

5. Some applications. A universal algebra 21 = (A ; F) is idempotent

if every fEF is of positive arity (i.e., not nullary) and satisfies

/(x, x, • • • )=x. Using the notations of [5], this is the same as

í>o(2í)=íi(2í)=0. For wè2, £„(2Í) will again denote the number of

essentially n-ary polynomials.

Theorem 4. Let 21 be an idempotent algebra satisfying £2(2I) = 1 and

M2I)^2. Thenpni%)^qn,forn^4.

Proof. Since p2(2I) = l, 21 has a commutative, idempotent binary

polynomial, x o y. If o is nonassociative, then by Theorem 1,

Pnin)^Pni(A;o))^qn.

If o is associative, then we apply an inequality of [4] :
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(27) ¿„(21) ̂  2#_i(8t) + 1    for » ê 2.

By assumption ^(21)^2, hence by (26), £4(21) ̂ 2-2 + 1 =g4; since, by

(5), q„ = 2g„_i ± 1, this implies that pn(21) ̂  g„(21) for all n è 4.

We can reinterpret a special case of Theorem 4 using a concept

introduced in [3]. Let us say that the sequence (po, px, ■ ■ ■ , pn-x) has

the minimal extension property if for some algebra 2Í : (i) £¿(21) =pk for

k<n; (ii) if any algebra 53 satisfies pk(Sß)=pk for k<n, then £*(2I)

á/»i(S3)foralI*.

Corollary. The sequence (0, 0,1, 3) Äas the minimal extension prop-

erty.

From the proof of Theorem 3 we get a corollary that the identities

(15), (19) and (20) together with the commutative and idempotent

laws form an equationally complete set; this was proved by S. O.

Aliev (Algebra i Logika Sem. 5 (1966), 5-14). To see this observe that

any such groupoid arises from an abelian group of exponent 3 and

that every word in the basic groupoid operation is a word in the group

operation (by property (1)). Since it is well known that any such

group is equationally complete, the result follows immediately.

Using arguments similar to the ones in the proof of Theorem 3 one

can show that 21 = (A ; o) arises out of a commutative Moufang loop of

exponent 3 if we just demand that £n(2I) =qn for w = 2, 3. Since such a

loop need not be a group, our theorem cannot be strengthened by

omiting the assumption pi(W) =<7>

References

1. J. Dudek, The number of algebraic operations in an idempotent groupoid, Colloq.

Math 21 (1970), 169-177.
2. G. Grätzer, Universal algebra, Van Nostrand, Princeton, N. J., 1968. MR 40

#1320.
3. -, Universal algebra, Trends in Lattice Theory, Van Nostrand, Princeton,

N.J., 1969.
4. G. Grätzer and J. Plonka, On the number of polynomials of an idempotent

algebra. I, Pacific J. Math. 32 (1970), 697-709.
5. G. Grätzer, J. Plonka and A. Sekanina, On the number of polynomials of a

universal algebra. I, Colloq. Math. 22 (1970), 9-11.

6. J. Plonka, On the number of independent elements infinite abstract algebra having a

binary operation, Colloq. Math. 14 (1966), 189-201. MR 33 #88.
7. --, On the arity of idempotent reducís of groups, Colloq. Math. 21 (1970),

35-37.
8. -, On algebras with n distinct essentially n-ary operations, Algebra Uni-

versalis (to appear).

9. -, On algebras with at most n distinct essentially n-ary operations, Algebra

Universalis (to appear).

University of Manitoba, Winnipeg, Manitoba, Canada


