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A LIMITATION THEOREM FOR
ABSOLUTE SUMMABILITY

GODFREY L. ISAACS

ABSTRACT. Let 4 () be of bounded variation over every finite
interval of the nonnegative real axis, and let f{e~* d4 () be sum-
mable | C, k‘ for a given integer £ =0 and a given s whose real part
is negative. Then it is known that the function R(k, w) = (1/T'(k+1))
-J&(w—w)* dA (u) (which certainly exists in the | C, k| sense by a
well-known summability-factor theorem) satisfies e “*w*R(k, w)
=o0(1) |C, OI (w— ). In this paper we extend the above result
by showing that if the hypotheses are satisfied with k fractional,
then e—sw*R(k+8, w) =0(1)| C, 0| for each >0 and that this is
best possible in the sense that § may not be replaced by 0.

1. Let A(w) be of bounded variation over every finite interval of
the nonnegative real axis. We write

) Fla;2) = f “fw)dA@) = L+ o(1) (C, k)

(read: F(a; x) is summable (C, k) to the limit L, or J; f(u) dA(u)
exists in the (C, k) sense and equals L) if

I'(k + 1)x*Fi(a; x) = x"‘fz (x — w)f(u)dA(u) — L

as x— . (Stieltjes integrals are to be taken in the Riemann sense.)
If in addition x~*Fi(a; x) is of bounded variation over [a, =) we
shall write | C, k| instead of (C, k) in the notations above.

This paper is concerned with the (C, k) and | C, k] summability of

@ C) (=C0;2) = f " eurd A (u)
and of
3) R(E, w; %) = 1T + 1) f "4 — w)dA).
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We shall write

@ R, w) = (/1 + 1) [ "4 — w)dAw)

so that R(k’, w) exists in the (C, k) sense iff (3) is summable (C, k).
In virtue of [1, p. 300], if (2) is summable (C, k) (or | C, k]) for some
k=0, Re(s) <0, then R(k’, w) exists in the (C, k) (or [C, kl) sense
for each w=0, ¥’ =0. We have now:

THEOREM A [5, pp. 412-413]. If k=0, 1, 2, - - -, and (2) is sum-
mable | C, k] , where Re(s) =0 <0, then

e *R(k, w) = o(1) I C, 0| .

The last phrase will mean that the function on the left, g(w), say,
tends to 0 as w— o and is of bounded variation over [1, »), i.e.,

[“a = — s+ 0],

1

We state now, writing [k] for the largest integer <k, and (k) for
k—[k]:

TueoREM A’. If k is positive and fractional, and if (2) is summable
| C, k[ for some s such that o <0, then

e wrR(k, w) = B(w) + (—1)F+1y—*T(w),
where B(w) =0(1) | C, 0| and

w+1
©) T@) = /1) [ = ) Cdd

C(u) being given by (2).
TaEOREM A’. Under the hypotheses of Theorem A’,
e R(k + 8, w) = o(1) [ C, O| for each 6 > 0.
THEOREM A’". Under the hypotheses of Theorem A’, e**w—*R(k, w)

s not necessarily bounded, even with e~** replaced by e~*X with X as
large as we please.

Theorem A’ is the extension of Theorem A to the case k fractional,
and Theorem A’ shows that Theorem A’ is best possible in the
sense that & may not be replaced by 0.

2. We shall prove the following slight generalization of The-
orem A’:
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THEOREM A'*. If C(w) is summable IC , k—6] , where k is positive
and fractional, and ¢ <0, 08 <(k), then
e wbkR(k, w) = B®(w) + (—1) kl+1yb~kT ()
where B®(w) =o(1) | C, 0| and T(w) is given by (5).

By [6], slightly modified, the (C) versions of Theorems A’* and
A" (obtained by replacing IC, - | by (C, - - -)) hold. Thus it is
sufficient to prove A’* and A" with ‘ =0(1)’ replaced by ‘is summable’.
We shall use (see [6, (25)-(31)]):

LeMMA 1. If for a given k 20 and ¢ <0, C(w) is summable (C, [k]+1),
then R(k, w) exists in the (C, [k]+1) sense and

[k]+1

R(k, w) = E b,Q(k, v, w)

v=0

where

©) 0 w) = [ Conta)(u — wyr-revas,

the integrals being convergent, and the b's being constants, with
Q) burtr = (— 1)W1/ T((k)).
Theorems A’* and A’ will be deduced from

THEOREM A**. Under the hypotheses of Theorem A'*, e—vew®—*
-Q(k, v, w) is summable | C, 0| if either (i) 0<8<(k), v<[k]+1, or
(ii) 6=0, v=<[k].

We shall require

LEMMA 2. Let w=1, — o0 Sa<b= o, and a<u<b. If

b ©
F) = [ gtwif@in and [ 7] dugte 0] 5 g0,
then

J larw] s [ gl | aw

the integrals over (a, b) being supposed existent in the Lebesgue sense.
Proor. If wo=1<w;< - - - <wn we have
m b m
3 | Pl = P | < [ 1760 |du 3 | gt ) — s
n=l a n=1

and the sum on the right is <g(x) by hypothesis.
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ProoF oF THEOREM A**. We write
p() = *Cis(t) (> 0),

8

® -0 t = 0).
Then p(¢) is of bounded variation over [0, ©). Let
) D(u, w) = Cpy41(#) — Craa(w).

Then integrating by parts in (6) and using Cpy1(%) =0@H+Y), we
have wi—*¢—*Q(k, v, w) = (v—k)I,—sI,_, where

(10) I, = w** f (u — w)s—""lew2D(y, w)du.

Now I'(6—(k)+1)D(u, w) can be expressed as

(11) f (u — §)=%®C,_4(t)dt — f (w — £)=®C,_s(t)dt.
0 1]

We write the first integral as the sum of integrals over [w, %] and
[0, w] and then combine the second of these with the second integral
in (11), thus obtaining X + Y, say. We replace Ci—s(¢) by t3p(¢) in
each of these, and then put t=w+4+(u—w)y in X and t=w—x in Y.
Inserting the resultant expression in (10) and putting ¥ =w-32, we
obtain for I'(6 — (k) +1)1,:

0 1
f gt k1—vgeady f (1 = 9)5®r(z, 3, w)p(w + zy)dy
0 0

a .

— [Tt [T {0 — @t 90} (1~ 2f)p0 — i
0 0

= L(w) - M(w)a

say, where (2, ¥, w) = (1 +2y/w)*2. Since r decreases as w increases,
f | do(rp(w + 29)) | = f | p(or/0w) | dw

)’ b

+ f r| dup(w + 29) | S (1 + 2)+,

1

say, where c is independent of zand y. Hence by Lemma 2,

© L 1
f |dL@)| = ¢ f (1 + 2)b-tgh+ (kl—vgredy f (1 — y)+®dy,
1 0 0
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which is finite in either case (i) or case (ii). Next, let
g(w, %) = 1 — 2/w)p(w —x) (0=x<w),
=0 (x = w).
Then

f "] duglw, 9| = f "| du(( = w/wpptw — )| S ¢,

where ¢’ is independent of x, by an argument similar to (13). Hence
by Lemma 2,

(14) f |aM(w)| = ¢ f glerdy f {a® — (x + 2)=®}du,
1 0 0

which is finite in either case (i) or case (ii). Since, finally, each of these
cases is satisfied by v—1 if it is satisfied by v, the proof of Theorem
A** is complete.

Proor oF THEOREM A”. Put k—8=F’ in Theorem A**, case (i).
Then by Lemma 1 the function S®(w)=e-vw=*R(k'+86, w) is of
bounded variation over [1, «) for each sufficiently small §>0. Now
by [6, Lemma 2] we have, for p>0,

Pt S (w) = 1/T(p) f " (4 — w)r eSO (u)du.

The substitution # =w+x followed by an application of (our) Lemma
2 and an argument like that of (13) gives S@+? (w) of bounded varia-
tion over [1, ). This completes the proof.

Proor oF THEOREM A’*. By either case (i) or case (ii) of Theorem
A** together with Lemma 1, we have for 0 =5 < (k),

wte o R(k, w) = H(w) + whte b 10k, [£] + 1, ),
where H(w) is of bounded variation over [1, »). We write, by (9),

O, [k] + 1, w) = (Lw+l+

=J +K,

0

) (u — w)®*r1e¥4(d.D/ou)du
w+1

wtl
J =e” f (u — w)®1C oy (u)du

oD
du
Ju

+ fﬂl (’M — w)(k)—l(etu _ ewa)

=.’1+Jg.
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Integrations by parts of K and J,, followed by arguments along the
lines of (11)—(14), show that e~**w?®*(K 4 J,) is of bounded variation
over [1, »). By (7) this completes the proof.

Proor oF THEOREM A’”’. We shall use

LEMMA 3. Suppose that k is positive and fractional and that y,
(n=1, 2, - ) is a given sequence of positive numbers tending mono-
tonically to . Then there exists a function C(u) such that

(@) C(u) s absolutely continuous over every finite interval
of the nonnegative real axis, and C(0) =0;
(15)
(b) Cw)=o0(1)|C, k|;

but such that the function T(w) given by (5) satisfies —T(2n) 2c'y, (n
=1,2, - - - ) (¢’ a positive constant).

ProoF. Let b, ¢ satisfy 0<c—b<2. We define (compare [3, p.
286]) a function g .(x) with domain b<x=¢, such that it is sym-
metric about x =(b+4c¢)/2 and

g.o(2) = (1 — EWMH)I2 - (h = 2 = (b+ 0)/2),

where E=(b+c—2x)/(c—b). By induction on 7, g{(x) has a factor
(1 —EW+)W+e—Eli+i—r for p<x < (b+c)/2 (r=1, 2, - - -, [k]+1),
and thus g{\(x) is 0 at x =0, ¢, (b+c)/2. The latter (with x=b, ¢) is
clearly true also for »=0. For = [k]+2 the function exists and is
bounded in b<x <(b+4c)/2 and in (b+c)/2 <x<c¢. Further,

(bte) /2 , ¢ ,
(16) f | go.0(%) | du =f [ g5.0(2) | da = 1.
b (b+c) /2

We now write h, =%e~"», and define G(u) as follows: for 0Su <1,
G(u) =0; and for u =1 we have, takingn=1,2, - - -,

Gu) =0 Cn=u<2n+1),
=1/n @ — 1+ hy € 0 < 20— hy),
¢Y))
= (1/n)gen—1,2n-1428,(u)  (2n —1 S u < 2n — 1+ h,),
= (1/7) gan—2ny,20(%) (2n — hn £ u < 2n).

Then 0=<G(x) £1 for all u>0. We see that G has a [k]+1th deriva-
tive everywhere, and a [£]+2th derivative almost everywhere, which
is bounded on every finite interval. Hence we may choose C(x) such
that Ci(u) =G(u), C(0) =0, and C(u) is absolutely continuous over



1971] A LIMITATION THEOREM FOR ABSOLUTE SUMMABILITY 53

every finite interval of the nonnegative real axis. Now by differentiat-
ing on the left side we have

| d © 2n 2n+1
f dus1+ Z( f + f )u""l Cur(u) | du.
1 2 2n

» (u*Ci(u)) <\J. .

The second integral on the right is 0; and by (17) and (16) the first is
=(2n—1)"*n—1(141), so that the sum is finite. Hence (15) is estab-
lished. We now write, by (5),

—T((;NTA — (k)T (2n)
2n+1 u
= - f (u — 2n)®1dy f (u — )=®Cp(t)dt.

We call this expression 1. Replacing # by 2z in the inner integral
(since Cy(¢) =0 for 2n=u =2n+1), then integrating the latter by
parts, and thereafter using the fact that the resulting integral is de-
creased by replacing its limits by 2»—1+h, and 2n—h,, we obtain,
after an inversion,

q 2n+1
I (k) f Ci(t)dt f (4 — 2m)0r1(y — §)=Cr-1dy,
? 2

n

where p=2n—1+h,, g=2n—h,. Writing u —¢ as

2n+1—u
(1 ntlow

- mA1—t
2n+1—t>("+ ),

expanding the (—(k)—1)th power of the first factor in a binomial
series and then integrating term by term, we see that the last inner
integral is (B)"'(2n+1—1)—®(2n —¢)~'. Hence by (17),

2n— p

2n — ¢

q
I= n‘lf @n+1—=16"®2n — t)~'dt = n~12-® log
V4

The definitions of p, g, k., now give I 22—y, which completes the
proof.

Proor oF THEOREM A’”. For the given s, let y,=e""¢e~2 Let
C(u) satisfy the conditions of Lemma 3, with this y,.

Choosing 4 (u) = [ e*d C(t), we see that by Theorem A’,

R(k, 2n) = e**(2n)*B(2n) + (—1)W+1g2neT(2y),

where the term involving B(2#) tends to 0 as n—«. But then
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lR(k, 2n)| =c"e®™ for all n large enough, where ¢’ is a positive con-
stant. This completes the proof.

In conclusion, I wish to thank Professor D. Borwein for his com-
ments and for Lemma 2 and Theorem A**, which greatly reduced
the complexity of my original proofs; also Professor W. H. J. Fuchs
for his valuable suggestions.
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