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A LIMITATION THEOREM FOR
ABSOLUTE SUMMABILITY

GODFREY L. ISAACS

Abstract. Let A («) be of bounded variation over every finite

interval of the nonnegative real axis, and let /"e-"* dA («) be sum-

mable \C, k\ for a given integer k äO and a given s whose real part

is negative. Then it is known that the function Rik, w) = (1/T(&+1))

■fwiu—w)k dA{u) (which certainly exists in the ]C, k\ sense by a

well-known summability-factor theorem) satisfies e~w'w~kRik, w)

= o(l) | C, 0| («i—>«). In this paper we extend the above result

by showing that if the hypotheses are satisfied with k fractional,

then e-^iv-tRik+S, w) =o(l)| C, O] for each S>0 and that this is

best possible in the sense that S may not be replaced by 0.

1. Let Aiw) he of bounded variation over every finite interval of

the nonnegative real axis. We write

(1) Fia; x) = j fiu)dAiu) = L + o(l)    (C, k)

(read: F(a; x) is summable (C, k) to the limit L, or /<,"/(") dA(u)

exists in the (C, k) sense and equals L) if

r(* + l)orkFk(a; x) = x~k f   (x - u)kfiu)dA(u) -» 7

as x—>°°. (Stieltjes integrals are to be taken in the Riemann sense.)

If in addition x~kFkia; x) is of bounded variation over [a, °o) we

shall write \C,k\ instead of (C, k) in the notations above.

This paper is concerned with the (C, k) and \C,k\ summability of

(2) C(x)    (=C(0;x)) =  f e-"'dA(u)

and of

(3) R(k', w; x) = l/T(k' + 1) f '(« - w)k'dA(u).
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We shall write

(u - w)k'dA(u)

so that R(k', w) exists in the (C, k) sense iff (3) is summable (C, k).

In virtue of [l, p. 300], if (2) is summable (C, k) (or | C, k\ ) for some

k^O, Re(s)<0, then R(k', w) exists in the (C, k) (or \C, k\) sense

for each w¡zO, k'^0. We have now:

Theorem A [5, pp. 412-413]. If k=0, 1, 2, • • • , and (2) is sum-
mable \C, k\, where Re(s) = <r<0, then

e-""w-*ic(¿, w) = o(l)     | C, 01 .

The last phrase will mean that the function on the left, g(w), say,

tends to 0 as w—»oo and is of bounded variation over [l, oo), i.e.,

/;
dg(u) = - ¿(I) + o(l)     I C, 0 |

We state now, writing [k] for the largest integer ^k, and (k) for

*-[*]:

Theorem A'. If k is positive and fractional, and if (2) is summable

| C, k\ for some s such that <r<0, then

e~waw-kR(k,w) = B(w) + (-l)'*]+1w-*J(w),

where B(w) =o(\) \ C, 0| and

(5) T(w) = l/r«£» I       (u - w)<">-lClk](u)du,

C(u) being given by (2).

Theorem A". Under the hypotheses of Theorem A',

e-*"w-kR(k + ô, w) = o(l)     | C, 01       for each S > 0.

Theorem A'". Under the hypotheses of Theorem A', e~w'w~kR(k, w)

is not necessarily bounded, even with e~w> replaced by e~wX with X as

large as we please.

Theorem A" is the extension of Theorem A to the case k fractional,

and Theorem A'" shows that Theorem A" is best possible in the

sense that Ô may not be replaced by 0.

2. We shall prove the following slight generalization of The-

orem A':
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Theorem A'*. If C(w) is summable \C, k — S|, where k is positive

and fractional, and ff<0, 0^8<(k), then

e-v'w'-xRik, w) = B^(w) + (-l)i*J+1w5-*7(w)

where B{l)(w) =o(l) | C, 0| and T(w) is given by (5).

By [ö], slightly modified, the (C) versions of Theorems A'* and

A" (obtained by replacing | C, ■ ■ ■ | by (C, ■ ■ ■ )) hold. Thus it is

sufficient to prove A'* and A" with ' = o(l)' replaced by 'is summable'.

We shall use (see [6, (25)-(31)]):

Lemma 1. If for a given k^O and a < 0, C(w) is summable id [k ] +1),

then Rik, w) exists in the (C, [&] + l) sense and

m+i
Rik, w) =   22 °vQ(k, v, w)

where
s* oo

(6) Q(k,v,w) =  I    Cm(u)(u - w)k-"eu'du,
J w

the integrals being convergent, and the b's being constants, with

(7) o[*]+i = (-i)[il+1/r«¿>).

Theorems A'* and A" will be deduced from

Theorem A**. Under the hypotheses of Theorem A'*, e~v"ws~k

■Q(k, v, w) is summable \ C, 0| if either (i) 0<S<(&), v¿ \k]-\-l, or
(ii) 8 = 0, v g [*].

We shall require

Lemma 2. Let w^l, — °° ̂ a<b^ °o, and a<u<b. If

then

giw, u)fiu)du   and   I     | dwgiw, u) \  ^ giu),

j   \dFiu)\  új giu)\fiu)\du,

the integrals over (a, b) being supposed existent in the Lebesgue sense.

Proof. If w0 = l<wi< • ■ ■ <wm we have

til /• b ffi

£   | F(wn)  - F(wn_i) |    á | f(u) \duY,\ g(u>„ U) - g(Wn-i, u) I ,
n=l J a i»=l

and the sum on the right is ^g(u) by hypothesis.
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Proof of Theorem A**. We write

p(t) = fi-"Ck-t(t)       (t > 0),

U =0 (/ = 0).

Then p(t) is of bounded variation over [0, oo). Let

(9) D(u,w) = C[k]+i(u) — C[k]+i(w).

Then integrating by parts in (6) and using C[k)+i(u) =0(u[k]+l), we

have wt~ke~w"Q(k, v, w) = (v — k)lv — slv-i where

(10) Iv = w*-h I    (u - w)k-v-le{-u-w)"D(u, w)du.

J to

Now r(5 — (k)+\)D(u, w) can be expressed as

(ii)        f " (« - ty-^Ck-^dt - fa(w- t)^>Ck-s(t)dt.

We write the first integral as the sum of integrals over [w, u] and

[O, w] and then combine the second of these with the second integral

in (11), thus obtaining X+Y, say. We replace Ck-s(t) by tk~sp(t) in

each of these, and then put t=w + (u — w)y in X and t=w—x in Y.

Inserting the resultant expression in (10) and putting u=w+z, we

obtain for T(ô-(k) + l)Iv:

/» oo /» 1
zs+W-ve"'dz I    (1 — y)5-<*V(z, y, w)p(w + zy)dy

o " o

(12)
/» oo /» to

zk-v-iez.¿z j     {¡¡t-w - (x+ z)«-<*>} (1 - x/w)k~ip(w - x)dx

= L(w) — M(w),

say, where r(z, y, w) = (1 +zy/w)k~h. Since r decreases as w increases,

/» 00 /» oo

I     I da(rp(w + zy))\   -è   \     \ p(dr/dw) \ dw

(13)     *

r|dtt/>(w + zy)|  gc(l + z)*"{,

say, where c is independent of z and y. Hence by Lemma 2,

/i oo /» oo /» 1

| <f¿(w) I   =: c I     (1 + z)*-^!*)-»*;*'^! I    (1 - y)*-ik)dy,
i «J o ^ o
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which is finite in either case (i) or case (ii). Next, let

q(w, x) = (1 — x/w)k~sp(w — x)        (0 ^ x < w),

= 0 (x ^ w).

Then

/OO /•  OO| d„q(w, x) |   g J     | 4,((1 - */w)*-{/>(w - *)) |   á c',

where c' is independent of x, by an argument similar to (13). Hence

by Lemma 2,

/I 00 /• oo rt 00

| ¿M(w) |  g c' I    a*—Vd* I     {z5"« - (* + z)s-<*>}d*,
1 •'0 •'o

which is finite in either case (i) or case (ii). Since, finally, each of these

cases is satisfied by v— 1 if it is satisfied by v, the proof of Theorem

A** is complete.

Proof of Theorem A". Put k — h = k' in Theorem A**, case (i).

Then by Lemma 1 the function SlS)(w) =e-waw~k'R(k'+S, w) is of

bounded variation over [l, oo) for each sufficiently small 3>0. Now

by [6, Lemma 2] we have, for p>0,

ev"wk'S(6+p}(w) = l/T(p) I    (u - w)f-leusuk'S^(u)du.

The substitution u =w+x followed by an application of (our) Lemma

2 and an argument like that of (13) gives S(6+p)(w) of bounded varia-

tion over [l, » ). This completes the proof.

Proof of Theorem A'*. By either case (i) or case (ii) of Theorem

A**, together with Lemma 1, we have for 0 ¿ 8 < (k),

ws-ke~W!R(k, w) = H(w) + ws-ke-v"b[kl+iQ(k, [k] + 1, w),

where 77(w) is of bounded variation over [l, oo). We write, by (9),

aw-t-l /» oo \
+  I      \(u- wyV-^'idD/duldu

= J + K,

/»te+l

7 = e"' I       (« - w)<*>-1Ct*](tt)¿w
J a

fw+1 QJ)
+   1        (u — w)<kr-1(eu' - ea')-du

J a dU

= 7i + 7,.
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Integrations by parts of K and J2, followed by arguments along the

lines of (11)—(14), show that e~wsws~k(K + J2) is of bounded variation

over [l, =o). By (7) this completes the proof.

Proof of Theorem A'". We shall use

Lemma 3. Suppose that k is positive and fractional and that y„

(w = l, 2, • ■ ■ ) is a given sequence of positive numbers tending mono-

tonically to oo. Then there exists a function C(u) such that

(a) C(u) is absolutely continuous over every finite interval

of the nonnegative real axis, and C(0) = 0 ;

(15)
(b) C(m) = o(1 )\C,  k\;

but such that the function T(w) given by (5) satisfies —T(2n)^c'yn (n

= 1,2, • • • ) (c' a positive constant).

Proof. Let b, c satisfy 0<c—b<2. We define (compare [3, p.

286]) a function ga,c(x) with domain orgxge, such that it is sym-

metric about x = (b+c)/2 and

&..(*) = (1 - £1*1+2)1*1+2        (b^xú(b + c)/2),

where E = (b+c — 2x)/(c — b). By induction on r, g£c(x) has a factor

(1-.£1*1+2) [*]+2-r£[*]+2~r  for   b^XÚ(b+c)/2    (r = l,   2,   •   •   • ,   [*] + l),

and thus g^c(x) is 0 at x = b, c, (b+c)/2. The latter (with x = b, c) is

clearly true also for r = 0. For r=[&]+2 the function exists and is

bounded in b<x<(b+c)/2 and in (b+c)/2<x<c. Further,

J" (M-e)/2 /»c
| gb,c(x) | dx =   I | ¿,,c(x) | dx = 1.

ö J (6+c)/2

We now write An = f e-""», and define G(u) as follows: for O^w^l,

G(u) =0; and for «^1 we have, taking« = 1, 2, • • • ,

G(u) =0 (In = u < In + 1),

= i/n (2n - 1 + hni u < 2n - h»),

(17)
= (l/w)g2n-l,2n-l+2An(w) (2« — 1 = u < 2n — 1 + A„),

= (l/w)g2n-2A„,2n(w) (2n -hnúu < 2n).

Then 0g>G(u) gl for all m>0. We see that G has a [fc] + lth deriva-

tive everywhere, and a [&]+2th derivative almost everywhere, which

is bounded on every finite interval. Hence we may choose C(u) such

that Ck(u)=G(u), C(0)=0, and C(u) is absolutely continuous over
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every finite interval of the nonnegative real axis. Now by differentiat-

ing on the left side we have

/> oo | ¿ oo    /     /• 2n /» 2n+l\

— («-*C*(«)) du é 1 + 22(  /      + I        )ir* I C».(«) | d«.
1     Id« »«.l\«/2n-l        •'an       /

The second integral on the right is 0; and by (17) and (16) the first is

^(2w — l)~%-1(l-r-l), so that the sum is finite. Hence (15) is estab-

lished. We now write, by (5),

-r«*»r(i - <*»r(2n)

/» 2n-f-l /• u

= -  I (« - 2nYk)~Hu I    (« - /)-<*>C4/(/)d/.
•'2b J 0

We call this expression I. Replacing m by 2w in the inner integral

(since Ch'(t)=0 for 2w^w = 2« + l), then integrating the latter by

parts, and thereafter using the fact that the resulting integral is de-

creased by replacing its limits by 2n — l+/z„ and 2n—hn, we obtain,

after an inversion,

/■ q /» 2n-t-l

Ck(t)dt I (u - 2nYkr-\u - t)-^~Hu,
p •* 2n

where p = 2n — !+&„, q = 2n — h„. Writing w — / as

/       2n + 1 — m\

('-¡^-f^)<2" + >-<>>

expanding the ( —(&) —l)th power of the first factor in a binomial

series and then integrating term by term, we see that the last inner

integral is <¿)-1(2w + l-í)-<*>(2»-í)_1. Hence by (17),

U «-1 Í   (2« + 1 - <)-<*>(2» - t)~ldt è w-^-Wlog
2n

p 2n — q

The definitions of p, q, hn, now give I è 2-<*>y„, which completes the

proof.

Proof of Theorem A'". For the given 5, let y„ = e^e-2"'. Let

C(u) satisfy the conditions of Lemma 3, with this yn.

Choosing A (u) =/S e*'dC(t), we see that by Theorem A',

R(k,2n) = e2n'(2n)kB(2n) + (-l)W+le2n'T(2n),

where the term involving 5(2«)  tends to 0 as n—»00.  But then
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\R(k, 2«) | ^c"e** for all n large enough, where c" is a positive con-

stant. This completes the proof.

In conclusion, I wish to thank Professor D. Borwein for his com-

ments and for Lemma 2 and Theorem A**, which greatly reduced

the complexity of my original proofs; also Professor W. H. J. Fuchs

for his valuable suggestions.
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