IDENTITIES OF GROUP ALGEBRAS

PAUL MILNES1

ABSTRACT. In this note the converse to the following well-known proposition about locally compact topological groups G is proved: if G is discrete, then the group C^* -algebra $C^*(G)$ has an identity.

Let G be a locally compact topological group and let $L:f\to L_f$ denote the left regular representation of $L^1(G)$ on $L^2(G)$; $L_f h = f^*h$, $\forall h \in L^2(G)$. If G is compact, it is a classical result that L_f is a compact operator $\forall f \in L^1(G)$. If, as well, G is not discrete, then $L^2(G)$ is infinite dimensional and, for each $f \in L^1(G)$, there is a sequence in $\{L_f h/h \in L^2(G), \|h\|_2 = 1\}$ converging to zero in $L^2(G)$. We now prove this last statement for arbitrary nondiscrete locally compact topological groups.

PROPOSITION. Suppose G is a nondiscrete locally compact topological group. Then, if $f \in L^1(G)$, there is a sequence in $\{L_f h/h \in L^2(G), \|h\|_2 = 1\}$ converging to zero in $L^2(G)$.

PROOF. It suffices to prove the result for $f \in C_{00}(G)$, a norm-dense subset of $L^1(G)$. Suppose $f \in C_{00}(G)$, $||f||_{\infty} = a$ and the support of f is K, a compactum. Let $\{V_n\}$ be a decreasing sequence of compact symmetric neighbourhoods of the identity of G such that $\mu(V_n) \to 0$, where μ is left Haar measure on G, and let $h_n = \chi_{V_n}/(\mu(V_n))^{1/2}$. Then $L_f h_n(t) = f^* h_n(t) = \int f(s) h_n(s^{-1}t) d\mu(s) = 0 \quad \forall t \in KV_n \text{ and, } \forall t \in G$, $|L_f h_n(t)| \leq a(\mu(V_n))^{1/2}$. Hence, $||L_f h_n||_2^2 \leq a^2 \mu(V_n) \mu(KV_n) \to 0$ as $n \to \infty$. Q.E.D.

Let $C_r^*(G)$ denote the C^* -algebra obtained by completing $L^1(G)$ in the norm $f \to ||L_f||$. $C_r^*(G)$ can be identified with the C^* -subalgebra of $\mathfrak{L}(L^2(G))$ generated by the operators $\{L_f/f \in L^1(G)\}$ (see [1, p. 187], for example).

COROLLARY 1. Suppose G is a nondiscrete locally compact topological group. Then $C_{\tau}^*(G)$ does not have an identity.

PROOF. Suppose $C_r^*(G)$ does have an identity, 1. Let $f \in L^1(G)$ be such that $||1-L_f|| \le 1/4$ and let $h \in L^2(G)$, $||h||_2 = 1$ be such

Received by the editors October 26, 1970.

AMS 1970 subject classifications. Primary 22D25.

Key words and phrases. Locally compact topological group, C*-algebra.

¹ The author is indebted to Professor L. T. Gardner, his supervisor at the University of Toronto, where this research was done, for some helpful discussions.

that $||L_f h||_2 \le 1/4$. Then $||(1-L_f)h||_2 = ||h-L_f h||_2 \ge ||h||_2 - ||L_f h||_2 \ge 3/4$, which is a contradiction.

The group C^* -algebra $C^*(G)$ of G is obtained by completing $L^1(G)$ in the norm $f \rightarrow \sup ||\pi_f||$, where π ranges over all *-representations of $L^1(G)$ as operators on a Hilbert space.

COROLLARY 2. Suppose G is a nondiscrete locally compact topological group. Then $C^*(G)$ does not have an identity.

PROOF. Since $C_r^*(G)$ is a homomorphic image of $C^*(G)$ [1, (1.15), p. 187] and $C_r^*(G)$ has no identity, $C^*(G)$ has no identity.

It is well known that, if G is discrete, $L^1(G)$ has an identity and hence so do $C_r^*(G)$ and $C^*(G)$.

REFERENCES

1. P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37 #4208.

University of Western Ontario, London, Ontario, Canada