
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 29, Number 3, August 1971

SEPARATION OF ROOTS AND OSCILLATION IN
ORDINARY LINEAR DIFFERENTIAL EQUATIONS

OF SECOND ORDER

SHLOMO BREUER AND DAVID GOTTLIEB

Abstract. New criteria for the oscillatory or nonoscillatory

behavior of ordinary, linear differential equations of second order

and the location of their roots are obtained with the aid of new

types of Sturmian majorant comparison equations. Several known

results are obtained as special cases under less stringent conditions.

1. Introduction. The oscillatory properties of ordinary differential

equations of the second order and the approximate location of their

zeros have received widespread attention in the literature. Recently,

Swanson [l] has compiled many of the known results in book form.

The principal method of investigation is the use of the classical form

or some modern variant of the Sturm Separation Theorem. Thus one

must find an equation which majorizes the given one in the Sturmian

sense in order to be able to compare the two and obtain the desired

information. A typical comparison equation is the Euler equation

whose use, of course, is limited due to its very special nature.

In this paper we introduce two new types of comparison equa-

tions for second order linear differential equations—which are indeed

generalizations of the Euler equation—whose solutions are known

and which can be associated for comparison purposes with the equa-

tion under investigation. These associated comparison equations have

been previously discussed by the authors in connection with the trans-

formation of ordinary differential equations into equations with con-

stant coefficients [2]. With the aid of these new comparison equations

we are able to find new criteria for oscillation and nonoscillation as

well as approximate the location of zeros inside finite and infinite

intervals.

Moreover, several known results which have been obtained by a

fairly complicated analysis are recovered here as special cases and

under less stringent conditions.
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2. Separation of roots and oscillation theorems. We begin with two

lemmas which form the basis for all subsequent results.

Lemma 1. Let the differential equation

(1) [a(x)u']' + \       u = 0,       xE(a,ß),
a(x)[p(x)]2

hold in some open interval (a, ß), where a(x) is a positive, continuously

differentiable function and ki a positive constant. Then the general solu-

tion of (1) is given by

(2) u(x) = Ai[p(x)]^ + A2[p(x)]^,

where

/'*    dt—>
a       «(0

Ai and A2 being arbitrary constants and k2 a nonnegative constant.

Lemma 2. Let the differential equation

(Ki[q(x)]2   \ '
(4) {     m,     4   +c(x)z = 0,        xE(a,ß),

\     c(x)        )

hold in some open interval (a, ß), where c(x) is a positive, continuously

differentiable function and Ki a positive constant. Then the general solu-

tion of (4) is given by

(5) z(x) = Bi[q(x)]" + £,[?(*)]"•,

where

(6) »i,s = - 1/2 ± [1/4 - (l/Ki)]l'\       q(x) = K2 +  f  c(t)dt,
J a

Bi and B2 being arbitrary constants and K2 a nonnegative constant.

Lemmas 1 and 2 follow directly from Corollary 4.1 case (i) in [2].

They can of course be verified directly, by substitution.

Remark 1. If ki> J, then m\ and m2 are complex and are given by

(7) OTi,s = 1/2 ±yi,        y = (ki - 1/4)1'2.

In that case, (2) gives way to

(8) u(x) = [p(x)]1i2{Aisin[y\ogp(x)] + A2 cos[y \ogp(x)]\.
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Similarly, if K\ <4, then »i and «2 are complex and are given by

(9) «i,2 - - \ ± U,       8= (1/Kt - J)1'2,

so that (5) takes the form

(10) z(x) = [q(x)]-'i2{Bl sin[51og q(x)] + B2 cos[Slog q(x)]\.

Remark 2. If we let k\ and k2 tend to infinity in such a way that

(kl/ki) tends to a positive constant, d~2, then the general solution of

(1) appears as

r   rx   dt~\ r   rx   dt~\
(11) u(x) = Aisinld \      —-\ + Atcaa\d\      -—  .

L Ja   a(t)A L J*   a(t)\

Similarly, if analogous conditions are met by (\/K\), K2 and some

positive constant, D~2, respectively, then the general solution of (4)

appears as

(12) z(x) = Bx sin \d f c(t)dt\ + J52 cos \D \   c(t)dt   .

It is readily seen that Remark 2 is a direct consequence of case (iii)

of Corollary 4.1 in [2].

Next we define, for future reference, the following four quantities.

Vi, =    inf   a(x)c(x)[p(x)]2,

v* =   sup   a(x)c(x)[p(x)]2,

(13)
V* =    inf   a(x)c(x)[q(x)]~2,

xB(.a,ß)

V* =   sup   a(x)c(x)[q(x)]"2.
xe(.a,ß)

We are now ready for the following theorem.

Theorem 1. Let the differential equation

(14) [a(x)y'Y + c(x)y = 0,       x G (a, 0),

AoZ¿ î» 50»ie open interval (a, ß), where c(x) is continuous (not neces-

sarily positive), and a(x) is as in Lemma 1. Then the following results

hold.
(a) // d*<1/4, for some k2^0, then y(x) vanishes at most once in

{a,ß).

(b) If î/*> 1/4, for some k2^Q, then y(x) vanishes between any two
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consecutive zeros ofu(x) as given by (8), with ki=v*. Since we can easily

find k2, Ai, and A2 such that u(a) =u(ß) =0, it is clear that y(x) vanishes

at some point.

Proof. In (1), choose kt = v* and compare (1) with (14). By the

classical Sturm Comparison Theorem, the solution u(x) of (1),

given by (2) for &i<l/4, must vanish between any two consecutive

zeros of y(x). But for ¿i<l/4, u(x) vanishes at most once in (a, ß)

and hence so does y(x). This proves (a).

To prove (b), choose ki—v^ in (1). The Sturm Comparison Theo-

rem readily shows that y(x) vanishes between any two consecutive

zeros of u(x), which for &i>l/4 is given by (8). This completes the

proof of Theorem 1.

The next theorem, based on (4), is analogous to Theorem 1.

Theorem 2. Let (14) hold in (a, ß) with both a(x) and c(x) con-

tinuously differentiable, positive functions. Then the following results

hold.

(a) If F*<4, for some K2^0, then y(x) vanishes between any two

consecutive zeros of z(x) as given by (10), with R~i = V*. As in Theorem

1 (b), it is clear that y (x) vanishes at some point.

(b) If F*>4, for some K2^Q, then y(x) vanishes at most once in

(«, 0).

Proof. In (4), choose Ki= V* for case (a) and Ki= V* for case

(b), and proceed exactly as in Theorem 1.

We shall see next that Theorems 1 and 2 contain some known re-

sults as special cases. Moreover, the method of proof employed here

enables us to extend some known results as well. We shall be con-

cerned with semi-infinite intervals for which ß = °o.

In the following corollaries we shall use the symbols w*, w*, W*

and W* to denote the values of the right-hand sides of (13), re-

spectively, after sup and inf have been replaced with lim sup and

lim inf.

Corollary 1. Let a(x) and c(x) be as in Theorem 1.

(a) If JZ idt/a(t)) = oo and w* > 1/4, then
(i) The solution y(x) of (14) is oscillatory.

(ii) The zeros of y(x) occur, asymptotically as x—> », between any two

consecutive zeros of (8), in which ki=w*, and we may take k2 = 0.

(b) If w*<\/A, y(x) is nonoscillatory.

For a(x) = i, case (a)(i) and case (b) reduce to the Hille-Kneser

Theorem [3], [l, Theorem 2.41]. Case (a)(ii) appears to be a new

result.
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Corollary 2. Let a(x) and c(x) be as in Theorem 2.

(a) If fZ c(t)dt= » and W*<i, then
(i) The solution y(x) of (14) is oscillatory.

(ii) The zeros of y(x) occur, asymptotically as x—> <», between any

two consecutive zeros of (10), in which R~i = W*, and we may take K2 = 0.

(b) // W/*>4, y(x) is nonoscillatory.

Remark 3. If in Corollaries 1 and 2 the conditions «;*>l/4 and

W*<4 can be replaced with z/*>l/4 and V*<4, respectively, the

conclusions about the interlacing of the zeros of y(x) will clearly hold

throughout the interval (a, «>).

Corollary 3. Let a(x) and c(x) be continuously differentiable func-

tions in (a, =o ), let a > 0, and c nonnegative. Let

(15) lim a[(ac)-li2]' = L.
X—*oo

(a) If fa (dt/a(t)) = « and 0 g L < 2, then
(i) The solution y(x) of (14) is oscillatory.

(ii) The zeros of y(x) occur, asymptotically as x—> », between any two

consecutive zeros of (8), in which k\ = L~2 provided L^O, and we may

take k2 = 0.

(b) If L>2, y(x) is nonoscillatory.

Proof. Let L<2. From (15) we infer the existence of Xo such that

for every e > 0 and x > x0(e),

(16) a[(ac)-112]' < L + e < 2,

which implies

/ Cx    dt
1/2(17) (ac)-l<  {(L + e) I      -~ + (ac)

i(t)

Consequently,

r rx   dtl2 1 1
(18) w* = liminfac     I      -     > -> —,

LJa    a(t)\        (L + e)2       4'

and the result of (a) follows from Corollary 1. The proof of (b) is

analogous.

The case L = 0 has been treated by Potter [4], [l, Theorem 2.57].

Case (a)(i) and case (b) have been obtained by Potter [4], [l,

Theorem 2.36], but only with the additional condition, for case

(b), that f~ (dt/a(t))= », which is not required here. Case (a)(ii)

appears to be a new result.

Exactly as we proved Corollary 3, we may also prove the following.
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Corollary 4. Let a(x) and c(x) be as in Corollary 3, and let

(19) lim — [(ac)1'2]' = M.
x—► »    C

(a) ///" c(t)dt= oo and 0^M<2, then

(i) The solution y(x) of (14) is oscillatory.

(ii) The zeros of y(x) occur, asymptotically as x—>«>, between any

two consecutive zeros of (10), in which K~i = M- provided M5¿0, and

we may take K2 = 0.

(b) // M>2, then y(x) is nonoscillatory.

The next two corollaries are based upon Remark 2, following

Lemma 2.

Corollary 5. Let a(x) and c(x) be as in Theorem 1, and let ac^H2

for some positive constant H2, in (a, °o). Then a necessary condition for

(14) to be oscillatory is that

dl
(20) /'*    dt-

a    a(t)

If, in addition, c(x) is as in Theorem 2, then a sufficient condition for

(14) to be oscillatory is that

(21) lim    I    c(t)dt = ».
X—*°o     J a

In that case, the zeros of the solution y(x) of (14) occur, asymptotically

as x—* oo, between any two consecutive zeros of (12), with D = H~l.

Proof. Consider the differential equation

(22) \a(x)u']' +-u = 0.
a(x)

By the Sturm Separation Theorem, and since ac^H2, (22) must be

oscillatory if (14) is. But by Remark 2, the solution of (22) is given

by (11) with d — H, for which a necessary condition for oscillation is

precisely (20).

To prove the sufficiency condition (21), we consider

r #2     1'
(23) |^ -—-z'J + c(x)z = 0,

whose solution is given by (12) with D = H~\ If (21) holds, (12) is
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oscillatory and hence, by the Sturm Separation Theorem, so is (14).

The proof of the interlacing of the zeros is now trivial.

We observe that the conditions for oscillation in this corollary

have also been obtained by Moore [5], [l, p. 73], but the location

of the zeros deduced here appears to be a new result.

Finally, we have the following corollary, analogous to Corollary 5.

Corollary 6. Let a(x) and c(x) be as in Theorem 2, and let ac

^h2>0. Then a necessary condition for (14) to be oscillatory is (21)

and a sufficient condition for (14) to be oscillatory is (20). In that case,

the zeros of (14) occur, asymptotically as x—>°o, between any two con-

secutive zeros of (11), with d = h.
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