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ON CONTINUOUS AND MEASURABLE SELECTIONS AND
THE EXISTENCE OF SOLUTIONS OF

GENERALIZED DIFFERENTIAL EQUATIONS

HENRY HERMES1

Abstract. Let C(B") denote the space of nonempty compact

subsets of some bounded set Bn in Euclidean n dimensional space

En, topologized with the Hausdorff metric topology. The existence

of a solution to the initial value problem for the generalized differ-

ential equation dx(t)/dtSR(x(t)) is shown under the assumption

that R:En—»6(5") has bounded variation in some neighborhood of

the initial value, and under a less restrictive condition on the varia-

tion of R. Included are continuous and Lipschitz continuous selec-

tion results for mappings Q'.E1—»C(S") which are, respectively, of

bounded variation and Lipschitz continuous.

Introduction. Let E" denote Euclidean n dimensional space, Bn a

closed, origin centered ball of radius b in E", and 6(73") the metric

space of all nonempty compact subsets of BH with the Hausdorff

topology. We consider the generalized differential equation

(1) x(t) E R(x(t)),       x(0) = x° E E"       (x(t) = dx(t)/dt)

where R:En—>Q(Bn) is continuous. A solution of equation (1) is an

absolutely continuous function <p such that <p(t)ER(<p(t)) for almost

all t in some neighborhood of zero, <j>(0) =x°; a classical solution of

equation (1) is a continuously differentiable function <p with <p(0) =x°

and <j>(t) ER(<t>(t)) for t in some neighborhood of zero.

If 7? has convex values, the existence of classical solutions of equa-

tion (1) may be shown in many ways, see [l] or [2]. Filippov, [3],

proves the existence of a solution in the nonautonomous case when

the right side is continuous in t and x and satisfies a Lipschitz condi-

tion of the form h(R(t, x), R(t, x')) ^k(t)\x— x'\ where h denotes the

Hausdorff metric and k(-) is summable. This result can easily be

derived by use of a fixed point technique for set valued mappings, see

[4]. Filippov also obtains the existence of a classical solution with an

additional condition, which is automatically satisfied for the auton-

Received by the editors July 31, 1970.

A MS 1970 subject classifications. Primary 34A99.

Key words and phrases. Generalized differential equation, continuous selections.

1 This research was partially supported by the Air Force Office of Scientific Re-

search, Office of Aerospace Research, United States Air Force, under AFOSR Grant

No. 1243-67.

Copyright © 1971. American Mathematical Society

535



536 HENRY HERMES [August

omous equation. In the present paper the Lipschitz condition is re-

moved and replaced by a weaker condition involving the variation of

the set valued map R. We show that if R is of bounded variation, a

classical solution of equation (1) exists, while under a weaker condi-

tion, termed Property A, a solution is shown to exist.

The above-mentioned conditions are pertinent to the question of

when a continuous map Q: [0, t\—><5(B") admits a continuous selec-

tion, i.e. a continuous map q: [0, 2"]—>En with q(t)EQ(t) for all t. It

is shown that if Q is of bounded variation, a continuous selection

exists. A special case of this is if Q is Lipschitzian in the Hausdorff

metric, say with Lipschitz constant k, then one may show Q admits a

Lipschitz continuous selection q, also with Lipschitz constant k.

These results depend upon the domain of Q being the real line, i.e.

they are not true, for example, for mappings R:E3—»C(j33), see [2].

The following question also naturally arises. Given an equicon-

tinuous family {(2a}aE4 of mappings Q°".[0, T]—>C(5n), when does

there exist a measurable selection qa for each Q" such that the family

{<Za}aE.á is £i[0, T] conditionally compact? A sufficient condition is

shown to be, essentially, Property A. If such a family {g^JaE.! could

be shown to exist without imposing any additional conditions (such

as Property A), the method of proof, employed in the existence the-

orem given, would lead to an existence theorem for a solution of

equation (1) with i?:En—>e(_Bn) merely continuous. The existence of a

solution, in this case, is still, to the author's knowledge, an open

question.

1. Existence of solutions. We assume, throughout, that R:En

—»C(jB") continuously, where B" is as in the Introduction. C[0, T]

will denote the space of continuous (n vector valued) functions on

[O, T] with the uniform norm, and C¡,[0, T] the compact subset of

C[0, T] defined by

C»[0, r] = {xE C[0, r]:*(0) = «°, | *(/) - x(t') |  è b | / - t' | }.

If QGe(5n)andyG£"weusethenotationp(y,0 =inf {\y — q\ :qEQ\
while for Qu QiEQ(Bn), h(Qu Q2) denotes the Hausdorff distance be-

tween these sets.

For Q: [0, T]—>&(B"), define the variation of Q on the subinterval

[t—a, t], tr>0, denoted Vt^a(Q), as follows. Let P denote a partition

of [t — a, t], i.e. a finite collection of points t — <T = t0<h< • • • <tk+i

= t, and let 0° denote the set of all such partitions. For the partition P,

define
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VL(Q; P) = ¿ h(Q(tt+i), Q(Q),   vl„(Q) = sup{vL(Q; P):P E <p}.
«-i

Property A. For eachxGG[0, T],

/> T

Vft-,(R(x(-))) dl = 0
o

uniformly for x£C¡,[0, T]. (Assume x(t)=x(0) for /<0 so that

V',-a(R(x(-))) is defined for t — <r<0. This convention will be assumed

throughout, when necessary.)

Remarks. 1. It is clearly possible that the variation Vtl_<,(Q) is un-

bounded for some t, yet Vl-a(Q)E£i- For example, consider the

special case of Q a point valued function

q(t) = (1 - 0 sin (1/1 -I),        t* 1,

= 0, t = 1.

It is well known that q is not of bounded variation in [0, l], yet a

simple computation using the property that for t¿¿l, V\-a(q) =

/¡-a | ö(t) I dr shows that V¡-„(q)E£i[0, T], as a function of /.

2. If R is Lipschitzian, say h(R(x), R(x'))^K~\x—x'\, clearly

Property A is satisfied. Indeed

k k

vl,(R(x(-));P)= Y,h(R(x(t„+i)),R(x(tv)))<,Kb ¿ (t,+i-t,) = Kbo-

for any x E G [O, T].

3. Let7?:£'l->eCBri)continuouslyandletS= {yEEn: \y-x"\ èbT}.

We define the variation of R in S, denoted V(R, S), as follows. Let X

be any finite collection of points y1, ■ ■ ■ , yk+1 in S such that

22Ï-1 | y+l ~y'\ èbT and A denote the set of all such collections. Let

V(R,S,\) = Y,KR{y™),R(y*))
«=i

and V(R, S) be defined as sup { V(R, S, X) :X£A}. If 7(7?, S) < » we
say 7? has bounded variation in 5. Clearly, if 7? has bounded variation

in 5, then for any x£ G [0, T], V!t_,(R(x (■)))< » ; in fact V0(R(x(-)))

is finite for all ¿G[0, T] and continuous as a function of t

(see [5, Theorem 1, p. 223]; the identical proof applies). In

this case, Vlt_aR((x(-))) = V'0(R(x(-)))-V0-''(R(x(-))) and hence

lim^o V¡-aR(x(-))=0 for each x£G[0, T]. It also follows directly

from the definition that Vj_„(7?(-)), considered as a map of G>[0, T]
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—»E1, is continuous, hence since C¡,[0, T] is compact in C[0, T], one

obtains; If i? is of bounded variation in S, for any ¿G[0, T],

lim„_o Vt_<rR(x(-)) = 0 uniformly for xEC¡,[0, T].

4. For QEQ(Bn), let Q' denote a closed e>0 neighborhood of Q.

For each xECb[0, T] we consider R'(x(-)) : [0, T]—>e(5n) (increasing

the radius of Bn by e if necessary but retaining the notation Bn). Then

\R'(x(-)) }iec6[o,t] is an equicontinuous family. One may note that in

the proof of Theorem 1, which follows, the essential use of Property A

is to conclude that one may obtain a measurable (actually continuous)

selection rx for each R'(x(-)) such that the family {rx}x<=cb{o,n is

£i[0, T] conditionally compact.

Theorem 1. LetR:En-*Q(Bn) continuously. Then:

(a) If R is of bounded variation in the ball {yEEn: \y — x°| ^bT\

equation (1) admits a classical solution on [0, 2"].

(b) If R satisfies Property A, equation (1) admits a solution on [0, 2"].

Proof. (In essence, this proof is a modification of the Peano exis-

tence proof for ordinary differential equations with continuous right

sides.)

The family {i?(x(-)) }xec¡,[o,t] is equicontinuous, where we con-

sider each R(x(-)) as a map of [0, T] to Q(Bn). For each i= 1, 2, • • • ,

let u > 0, e, —> 0 as t —> oo and for each u let S,- > 0 be such that

h(R(x(t)), R(x(t')))<eiií \t-t'\ <5¿, xGC¡,[0, T\. We assume, with-

out loss of generality, that 5¿—>0 as i—* <x>.

Pick q0ER(x°). For each i = l,2, ■ ■ ■ , define r<: [Su T]-*E" as

follows. Letr<(i)=çoif -è^tûOi. Define

(2) *'(/) = x° +  T r'ir) di
J o

for t E [— Si, S,], and choose q\ E R(xi(oi)) such that \q0 — q[\

= p(g0, R(xi(Si))). We define ri(2Si) as q[ and extend rl to [-S1( 2S(]

as the straight line segment joining q0 and gî on the interval [S¿, 25,].

We now extend xi to [ — S1( 25¿] by equation (2). Proceeding induc-

tively, if x' is defined on the interval [ — Si.jSj] choose q)ER(x'(J0i))

such that \q)-\— q]\ =p(q]-i, R(x'(jhx))), define ri((j-\-l)hl) as g5 and

extend rl to [ —Slt (j'+lJS,-] as the straight line segment joining

gj_! and q) on |j'5j, (j + 1)5»]. Then extend xi to the interval

[ —Si, 0 + l)S»] by equation (2). Continue in this manner until each

function r' and x' is defined on [ — Si, 2"]. We note that r{EC[ — 8X, T]

while x'ECb[0, T], when restricted to |0, T]. Furthermore, we have:
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| r*((j + 1)5.) - r'(j6i) \   =  \ q) - q)-i I   = p(<7/-i. * («W))

(,) á h(R(x<((j - 1)50), RWi))) < «i.

(ii) Given any /£ [0, T] there exists an integer/ such that |/5¿ — ¿|

<S,-. Then

p(r<(t), «(*'(<))) á | f(0 - r'Üíí) |  + *>('«, Ä(*W))

+ k(R(x<(JSi)), R(x<(D))

è 3e¿.

(iii) For any ¿, ¿'£[0, T], let/, /' be integers such that \t— /5,|

<5¿, |/'— /'5,-| <5,-. Assume, with no loss of generality, that /'>/.

Then

| r'(0 - r'(0 I á *>(/•'(<), *(*»))

+ £ h(R(x*((v + l)6{)), R(xi(uôi)))

+ p(ri(f),R(x'(j%)))

f-i

á 4Ci + £ *(*(«*((» + 1)0,)), ^(«'(vii))).

We are now in a position to prove conclusion (a) of Theorem 1. If

R is of bounded variation, it follows from Remark 3 that {r'(-)} is a

bounded equicontinuous sequence in C[0, T]. Indeed, given any

€>0, choose i* sufficiently large so that i'Sii* implies 4ej<e/2; now

choose 5>0 such that for 0^(T<S, F,'_, R(x(-)) <e/2 uniformly for

xECt[0, T]. Then from (iii), above, it follows that if i^i*, \t —1'\ <d

then | r'(t)— rl(t')\ <e, as desired. Thus {r*} has a uniformly con-

vergent subsequence {rik( ■ )} which converges, say, to r. Then {«**(•)}

has a uniformly convergent subsequence, say converging to x

£G[0, T]. From (ii) we see r(t)ER(x(t)), since R(x(t)) is closed,

while taking a limit in equation (2) gives x(t) =x°-\-f0 r(r) dr. Thus

x(t) =r(t)ER(x(t)), for all t; x(0) =xa, showing x is a classical solution

of (1).
To obtain conclusion (b) of Theorem 1, if 7? satisfies Property A

we find from (iii) that

f    | r\l) - r*(t - c) | dt g 4í;r +  f   vL(R(x*(-))) dt.
•J o J o

Now given any e>0 we can use Property A to choose a <ro>0 such
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jl V't.,(R(xi(-))) dt<t/2 if 0g<7á<r0, all t = l, 2, • • • . Next choose

j* sufficiently large so that for il=i*, 4e¿r<í/2. Then for i = i*,

O^o-go-o, Jo [r*(0 —r*(i—<r)j dt<e. By [6, Theorem 20, p. 298], the

sequence {r'} is £i[0, 2"] conditionally compact. Thus it has an

£i[0, T] convergent subsequence, {rik}, which converges, say, to r.

Again {x'k} has a uniformly convergent subsequence, converging

say, toxECt[0, T]. From (ii) vseseer(t)ER(x(t)) almost everywhere,

while taking a limit in equation (2) gives x(t) =x0-\-fl0 r(r) dr or

x(t) =r(t)ER(x(t)) almost everywhere, x(0) =x°, showing that x is a

solution (not necessarily a classical solution) of equation (1).

2. Continuous selections for continuous maps Q: [0, T\-^Q(Bn).

Much recent work, [7], [8], has been done to show the existence of

measurable selections (or selections which are Baire mappings) for

continuous (or lower semicontinuous) mappings F:X—*2Y where X

is a metric space, Y a complete, separable, metric space, and 2Y the

set of nonempty closed subsets of Y with the Hausdorff topology. In

general, one cannot expect more than a Baire selector, indeed if

Q: [O, 2"]—>e(232) continuously, many examples exist to show that

Q need not admit a continuous selection, see, for example, [2]. Even

if one imposes further conditions, such as a Lipschitz condition, on

Q:E3—*e(B3), one may give a counterexample to the existence of a

continuous selection, see [2]. However, for the special case when the

domain of Q is E1, we may obtain the following

Theorem 2. Let Q: [0, T]—>e(Bn) continuously, Then

(a) If Q has bounded variation in [0, T], i.e. if Vl(Q) < », then Q
admits a continuous selection r.

(b) If Q satisfies a Lipschitz condition of the form h(Q(t), Q(t'))
t=K\ t —1'\ then Q admits a Lipschitz continuous selection r satisfying

I r(t) ~r(t') | = R~\ t — t'\, i.e. the same Lipschitz constant.

Proof. For each positive integer A, consider the points 0, T/k,

2T/k, ■ ■ ■ , T. Choose ftG<2(0); q\EQ(T/k) and such that \q*0-q\
= p(Qo, Q(F/k)), and inductively q'jEQdT/k) and such that | q]-\— q)
= p(Qj-i< Q(jF/k)). Define rk\ [0, T\—>En as the polygonal arc joining

the points q*}, j = 0, ■ ■ -, A. Then

(i) For any ¿G[0, T] and any A, there exists an integer j =j(k)

such that \t — jT/k\ <T/k. Assume, with no loss of generality, that

te[(j-l)T/k,jT/k].Then

P(r"(t), Q(t)) = | rk(t) - rk(jT/k) \  + P(rk(jT/k), Q(t))

^ KQ((j - DT/k), Q(jT/k)) + h(Q(jT/k), 0(0).
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(ii) For /, t'E[0, T] and any k, let /, /' be integers such that

\t-jT/k\ <T/k, \t'-j'T/k\ <T/k. Then

| rk(l) - rk(t') |   ^ | rk(t) - rk(jT/k) \

+ S  \rk((v+l)T/k)-rk(vT/k)\

+ | r*(j'T/k) - r*(f) |

á h(Q(t),Q(jT/k)) + ¿ h(Q((v + l)T/k), Q(vT/k))

+ h(Q(t'),Q(j'T/k)).

Now, to show part (a), we first show that {»*}*_!,*... is equi-

continuous. Given any e>0 first choose k* sufficiently large so that

for k^k*, h(Q(h), Q(h))<e/3 if \h~h\ <T/k*. Next, since Q is of
bounded variation, V'0(Q) is continuous as a function of t on [0, T],

hence uniformly continuous, and we can choose a §>0 such that

V¡(Q)<e/3 if |o-ft|<«. Since \jT/k-j'T/k\ú\t-t'\+2T/k if
k>4T/8 and |í-/'| <ô/2, V¡T/t(Q) <«/3. Then from (ii) we have:

for£^max(4r/5,£*)and|/-/'| <5, \rk(L) -rk(t')\ <e/3+e/3+e/3=€

and equicontinuity is shown. Clearly the sequence \rk\ is bounded

hence it has a uniformly convergent subsequence, say converging to

rEC[0, T]. LeUE [0, T] and/(¿) be an integer such that | t-j(k)T/k\

<T/k, i.e. j(k)T/k-+t as &—►». From (i), and the fact that the set

Q(t) is closed, it follows that r(t)EQ(t), i.e. r is the desired continuous

selection.

To show part (b), we assume, without loss of generality in (ii),

that t^jT/k< ■ ■ ■ <j'T/k^t'. Then utilizing the Lipschitz condi-

tion for Q, (ii) becomes

| rk(t) _ rk(t>) |

Û KA\(jT/k) - t) + £ (((v + \)T/k) - vT/k) + (f - j'T/k)]

= K | /' - 11 .

Thus {rk\ is equicontinuous, bounded, and now has a subsequence

converging uniformly to, say, r£C[0, 7"] and r satisfies |r(/)— r(t')\

^K~\t —1'\. Again, from (i), we conclude r(t)EQ(t) and r is the de-

sired selection.
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