MUTUAL ABSOLUTE CONTINUITY OF SETS OF MEASURES

BERTRAM WALSH1

ABSTRACT. A theorem slightly stronger than the following is proved: If K is a convex set of (signed) measures that are absolutely continuous with respect to some fixed positive sigma-finite measure, then the subset consisting of those measures in K with respect to which all measures in K are absolutely continuous is the complement of a set of first category in any topology finer than the norm topology of measures. This implies, e.g., that any Banach-space-valued measure μ is absolutely continuous with respect to $|\langle \mu(\cdot), x' \rangle|$ for a norm-dense G_{δ} of elements x' of the dual of the Banach space.

Recently Rybakov [4] proved, by a direct but rather involved construction, that if (S, Σ) is a measurable space and $\mu: \Sigma \to E$ a countably additive measure with values in a Banach space E, then there exists a linear functional $x'_0 \in E'$ such that μ is absolutely continuous with respect to the (variation of the) scalar-valued measure $\langle \mu(\cdot), x'_0 \rangle$. This note gives a rather less involved proof of a stronger result, as indicated in the abstract above.

To fix our ideas and notation, let (S, Σ, λ) be a σ -finite measure space; since there is a strictly positive function in $\mathfrak{L}^1(\lambda)$, there is no loss of generality in taking λ finite, which we shall do. We shall denote by P_n $(n=1, 2, \cdots, \infty)$ the set of all n-tuples $\alpha = (\alpha_1, \alpha_2, \cdots)$ in R^n (or l_R^1 if $n = \infty$) for which all $\alpha_i > 0$, and by Q_n $(n=1, 2, \cdots, \infty)$ the subset of P_n for which $\sum_i \alpha_i = 1$. It is obvious that the P_n 's and Q_n 's are G_δ 's in their ambient spaces R^n and l_R^1 , and thus their topologies can be generated by complete metrics; in particular, they are Baire spaces (spaces for which the Baire category theorem holds).

Any measure-theoretic terms or notation not otherwise explained agree with the usage of [1]—except that $|\mu|$ is the variation of μ .

LEMMA 1. For any set $C \subseteq ca(S, \Sigma)$ of measures absolutely continuous with respect to λ , there exists a countable set $\{\mu_i\}_{i \in I} \subseteq C$ such that if $|\mu_i|(A) = 0$ for all i, then $|\mu|(A) = 0$ for all $\mu \in C$.

Received by the editors September 24, 1970.

AMS 1970 subject classifications. Primary 28A10, 28A45, 46G10; Secondary 47B99.

Key words and phrases. Measures, absolute continuity, vector-valued measures. Choquet simplex, maximal measures.

¹ Partially supported by NSF-GP-21182.

PROOF. Assuming $C \neq \emptyset$, one can find sets $A \in \Sigma$ for which there exist elements $\mu \in C$ such that $|\mu|(A) > 0$ and every $|\mu|$ -null subset of A is λ -null; e.g., if $\mu \neq 0$ and f is its Radon-Nikodým derivative with respect to λ , then $A = \{s \in S : |f(s)| \neq 0\}$ has that property. Zorn's lemma gives a maximal disjoint family $\{A_i\}_{i \in I}$ of such sets, with corresponding measures $\{\mu_i\}_{i \in I}$. Since all but countably many A_i 's must be λ -null, I is countable; the existence of an $A \in \Sigma$ with $|\mu_i|(A) = 0$ for all $i \in I$ but $|\mu|(A) > 0$ for some $\mu \in C$ would clearly contradict maximality. Q.E.D.

Let $\mathfrak M$ denote the topological vector space of all Σ -measurable scalar-valued functions on S under the topology of convergence in λ -measure. It is easy to verify that for any $A \in \Sigma$, $\delta > 0$ and open set U of scalars, the set $\{f \in \mathfrak M: \lambda(\{s \in A: f(s) \notin U\}) < \delta\}$ is an open set in $\mathfrak M$, and (consequently) the set $\{f \in \mathfrak M: \lambda(\{s \in A: f(s) \notin U\}) = 0\}$ is a G_δ in $\mathfrak M$.

LEMMA 2. Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in \mathfrak{M} , and set $B_i = \{s \in S: f_i(s) \neq 0\}$. Then

(1) for any finite n, the set of $\alpha \in P_n$ or Q_n for which

$$\lambda\left(\left\{s \in \bigcup_{i=1}^{n} B_{i} : \left| \sum_{i=1}^{n} \alpha_{i} f_{i}(s) \right| = 0\right\}\right) = 0$$

is a dense G_{δ} in P_n or Q_n respectively; moreover,

(2) the set of $\alpha \in Q_{\infty}$ for which

$$\lambda\left(\left\{s \in \bigcup_{i=1}^{n} B_{i} : \left| \sum_{i=1}^{n} \alpha_{i} f_{i}(s) \right| = 0\right\}\right) = 0$$

for all finite n is a dense G_{δ} in Q_{∞} .

PROOF. For any finite n, the map $(\alpha_1, \alpha_2, \cdots) \to \sum_{i=1}^n \alpha_i f_i$ is continuous from R^n or l_R^1 to \mathfrak{M} , and thus all the sets in question are G_δ 's. To prove the "density" part of assertion (1) for Q_n it clearly suffices to prove the part concerning P_n , and because $P_n = P_{n-1} \times P_1$ a proof by induction on n follows immediately from verification of the case n=2. To check that case we need only observe that the sets $S_\beta = \{s \in B_1 \cup B_2 : f_1(s) + \beta f_2(s) = 0\}$ are disjoint for distinct $\beta \in P_1$, and must therefore all be λ -null except for countably many choices of β . It follows that if (α_1, α_2) does not belong to the nowhere-dense set of solutions of $\alpha_2 = \beta \alpha_1$ for one of those countably many β 's, then

$$\lambda(\{s \in B_1 \cup B_2: \alpha_1 f_1(s) + \alpha_2 f_2(s) = 0\}) = 0;$$

so the set of (α_1, α_2) 's for which that relation holds contains the complement of a set of first category and is thus dense.

From assertion (1) it follows immediately that for any fixed finite n the set

$$\left\{\alpha \in Q_{\infty}: \lambda\left(\left\{s \in \bigcup_{i=1}^{n} B_{i}: \sum_{i=1}^{n} \alpha_{i} f_{i}(s) = 0\right\}\right) = 0\right\}$$

is a dense G_{δ} in Q_{∞} . The set of $\alpha \in Q_{\infty}$ for which that relation holds for *all* finite n is thus a countable intersection of dense G_{δ} 's in Q_{∞} and thus again dense by the Baire category theorem, a fact which establishes (2). Q.E.D.

We can now prove the principal theorem, stated in somewhat more general form than given in the abstract above.

THEOREM. Let K be a bounded² convex set in a locally convex space F, and suppose K is a Baire space. Let $T:K \rightarrow ca(S, \Sigma)$ be an affine map continuous in the norm topology of $ca(S, \Sigma)$, and suppose that the measures in T[K] are all absolutely continuous with respect to λ . Then the set of points $x \in K$ for which all measures in T[K] are absolutely continuous with respect to |Tx| is a dense G_{δ} in K.

PROOF. Setting C = T[K] in Lemma 1, we can select a sequence $\{x_i\}_{i=2}^{\infty}$ in K which has the property that if $\mu_i = Tx_i$, then $|\mu_i|(A) = 0$ for all i implies |Tx|(A) = 0 for all $x \in K$. Let f_i be a Radon-Nikodým derivative of μ_i with respect to λ , $i = 2, 3, \cdots$, let $B_i = \{s \in S: f_i(s) \neq 0\}$, and let $B = \bigcup_{i=2}^{\infty} B_i$. For each $\epsilon > 0$, the set

 $W_{\epsilon} = \{ \nu \in ca(S, \Sigma) : \text{there exists } \delta > 0 \text{ such that } \}$

$$|\nu|(A) < \delta \text{ implies } \lambda(A \cap B) < \epsilon$$

is open in the norm topology of $ca(S,\Sigma)$; indeed, if δ has that property for ν and $\|\nu-\pi\|<\delta/2$, then $\delta/2$ has that property for π . Thus $T^{-1}[W_{\epsilon}]=\{x\in K: \text{there exists }\delta>0 \text{ such that } |Tx|(A)<\delta \text{ implies }\lambda(A\cap B)<\epsilon\}$ is open in K, and we claim it is dense. To see this, let a point $x_1\in K$ and a convex zero-neighborhood N in F be given, and let f_1 be a Radon-Nikodým derivative of $\mu_1=Tx_1$; set $B_1=\{s\in S:f_1(s)\neq 0\}$. Let $\eta>0$ be so small that $0< t<\eta\Rightarrow (1-t)x_1+tK\subseteq x_1+N$; this is possible since K is bounded. Applying Lemma 2 to the sequence $\{f_i\}_{i=1}^\infty$, we can find an $\alpha\in Q_\infty$ satisfying condition (2) of that lemma and such that $\sum_{i=2}^\infty \alpha_i<\eta$. If n is so large that $(\sum_{i=1}^n \alpha_i)^{-1}(\sum_{i=2}^n \alpha_i)<\eta$ and $\lambda(B\setminus \bigcup_{i=2}^n B_i)<\epsilon/2$, then setting γ_i

² Alternatives to this hypothesis are possible. E.g., the assertion of the theorem holds if K is metrizable and $0 \in K$, even if K is unbounded.

= $(\sum_{i=1}^{n} \alpha_i)^{-1} \alpha_i$ we have $\sum_{i=1}^{n} \gamma_i x_i \in K \cap (x_1 + N)$, and $T(\sum_{i=1}^{n} \gamma_i x_i)$ = $\sum_{i=1}^{n} \gamma_i \mu_i$ which has Radon-Nikodým derivative $\sum_{i=1}^{n} \gamma_i f_i$ with respect to λ . Since

$$\lambda\left(\left\{s \in \bigcup_{i=1}^{n} B_{i} \colon \sum_{i=1}^{n} \gamma_{i} f_{i}(s) = 0\right\}\right) = 0$$

(for the γ_i 's are proportional to the α_i 's), one sees that λ is absolutely continuous with respect to $\left|\sum_{i=1}^n \gamma_i \mu_i\right|$ on $\bigcup_{i=2}^n B_i$, i.e., if $H \subseteq \bigcup_{i=2}^n B_i$ then $\lambda(H)$ can be made arbitrarily small by taking $\left|\sum_{i=1}^n \gamma_i \mu_i\right|(H)$ sufficiently small. In particular, there exists $\delta > 0$ with the property that for such an H, $\left|\sum_{i=1}^n \gamma_i \mu_i\right|(H) < \delta \Rightarrow \lambda(H) < \epsilon/2$; so if $A \in \Sigma$ is such that $\left|\sum_{i=1}^n \gamma_i \mu_i\right|(A) < \delta$, then

$$\lambda \left(A \cap \bigcup_{i=2}^{n} B_i \right) < \epsilon/2 \text{ and } \lambda \left(A \cap \left(B \setminus \bigcup_{i=2}^{n} B_i \right) \right) < \epsilon/2$$

and thus $\lambda(A \cap B) < \epsilon$.

We now need only use the fact that K is a Baire space to conclude that $K_0 = T^{-1} \left[\bigcap_{k=1}^{\infty} W_{1/k} \right]$ is dense in K. It is immediate that K_0 is the set of all $x \in K$ such that |Tx|(A) = 0 implies $\lambda(A \cap B) = 0$; but since $S \setminus B$ is null with respect to all $\{\mu_i\}_{i=2}^{\infty}$ and thus with respect to |Ty| for all $y \in K$, K_0 is the set of all $x \in K$ such that $|Tx|(A) = 0 \Rightarrow |Ty|(A) = 0$ for all $y \in K$. Q.E.D.

A strengthened form of Rybakov's theorem follows at once. Indeed, if $\mu: \Sigma \to E$ is a Banach-space valued vector measure, there is an adjoint linear mapping $T: E' \rightarrow ca(S, \Sigma)$ given by (Tx')(A) = $\langle \mu(A), x' \rangle$ and T is continuous in the norm topologies. It is known that there exists a finite positive measure $\lambda \in ca(S, \Sigma)$ with respect to which all the measures Tx' are absolutely continuous (see [1, IV.10.5, p. 321 or, for a direct, elegant proof see [2, Theorem 3.10, p. 199 ff.]). Taking the set K of our theorem to be the closed unit ball in E' (with the norm topology) and T to be the mapping just described, we see that the set K_0 of x'_0 in that unit ball having the property that μ is absolutely continuous with respect to $\langle \mu(\cdot), x_0' \rangle$ is a norm-dense G_{δ} . This has the amusing consequence that the norm of elements $x \in E$ can be computed by taking the supremum of $|\langle x, x_0' \rangle|$ over $x_0' \in K_0$. For another application of the theorem, suppose X is a simplex in the sense of Choquet [3], and let P be the unique linear extension of the mapping which assigns to each positive measure μ on X the maximal measure which represents it. P is norm-decreasing and therefore norm-continuous. Thus if K is a norm-closed convex set of measures on X such that P[K] is absolutely continuous with respect to some fixed positive measure λ , then there is a norm-dense G_{δ} set $K_0 \subseteq K$ such that every measure in P[K] is absolutely continuous with respect to $|P\mu|$ for each $\mu \in K_0$.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 2. G. G. Gould, *Integration over vector-valued measures*, Proc. London Math. Soc. (3) 15 (1965), 193-225. MR 30 #4894.
- 3. R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, N. J., 1966. MR 33 #1690.
- 4. V. I. Rybakov, K teoreme Bartla-Danforda-Švarca o vektornyh merah, Mat. Zametki 7 (1970), 247-254.

RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903