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ON THE LENGTH OF A HILBERT ASCENDING CHAIN

A. SEIDENBERG1

Abstract. It is shown that if a bound/(t) is placed on the de-

grees of the elements in some basis of an ideal Ai in the polynomial

ring k[Xi, • ■ ■ , X„] over the field k, *=0, 1, 2, • • • , then a bound

can be placed on the length of a strictly ascending chain An<Ai

< • ■ ■ . Moreover one could explicitly write down a formula for a

bound g„ in terms of /and n.

In a polynomial ring R = k [Xu ■ ■ ■ , Xx] over a field k any strictly

ascending chain of ideals ^40<^i< • • • is finite, but in general no

bound can be placed on the length of such an ascending chain, even if

we impose on the A, the condition that they have a basis of mono-

mials. It is plausible to conjecture, however, that if any sort of a

priori bound f(i) is placed on the degrees of the elements of a basis of

Ai, then the length of a chain A<><Ai< • • • is bounded. In [2, p.

56, Theorem 10] we proved this in the case the Ai have monomial

bases; here, we drop this condition, proving the theorem quite

generally.

Theorem. Letf(i) be a nonnegative integer for i = 0, 1, • • • and con-

sider ascending chains of ideals A0 <Ai< • • • <Asink [Xit ■ • ■ ,Xn],

where A¡ has a basis of elements of degree ^f(i). Then there is an

integer gn depending only on f and n such that the length of any such

chain is ^g„. Moreover one could explicitly write down a formula for gn

in terms of f and n.

For the proof, we note that the theorem is trivially true for n = 0

and obviously true for n = 1. We make an induction on n.

We recall some basic results of G. Hermann [l ] on computability in

a polynomial ring k [Xi, • • • , Xn] (for suitable k). Given an ideal 21 in

k[X]=k[Xu ■ ■ ■ , Xn] via a basis (fu ■ ■ ■ , f„) and an fEk[X],
Hermann has shown how to decide whether/£2I; and if it is, how to

construct gi, ■ • • , g, in k[X] such that/ = gi/i+ • • • -\-gafs. Given

two ideals 21, 33 via bases, she has also shown how to construct 21^33

and 21:33. Moreover, she has shown how to construct an irredundant

primary decomposition 21 = ®i(~\ ■ • • f~\®t of the ideal 21. Explicit
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bounds for the number of generators, their degrees, the number of

associated prime ideals, and their exponents in terms of n and a

bound d for the deg ft can be derived from her proofs in routine

fashion (or, since the formulae can be made monotone increasing in

each variable, also in terms of a bound on n and d). Because of her

constructivist viewpoint, Hermann assumes (in effect) that k is

explicitly given, i.e., that one can effectively carry out the field opera-

tions in a finite number of steps, and further (cf. [ó]) that one knows

explicitly how to construct a complete factorization for a given poly-

nomial fÇ£k[X] over k. Obviously, however, these bounds hold for

any k, irrespective of any constructivist assumptions and viewpoints.

Remark. Since the set of polynomials in k[X] of degree^d is a

finite-dimensional ¿-linear space, of a dimension given by a well-

known formula in terms of n and d, the number 5 of the/,- cannot, or

need not, enter into the formulae for the bounds. But from a con-

structivist point of view, in counting the number of steps in an

algorithm, the j does enter: thus we may be given superfluous/,-, and

to delete these requires a number of steps depending on s.

Occasionally we, too, partly for the sake of simplicity in formu-

lating our assertions, will adopt a constructivist point of view and

will assume k is explicitly given; but in no case do we make the

assumption on factoring a polynomial.

Lemma 1. Let ja, ■ ■ ■ ,/,„ i = \, • • • , t, be polynomials in the ring

k[Xi, • ■ • , Xn], w^O, and d an integer with d^ max {deg /</}. The

(gi, ■ ■ ■ . g.) with gi£k[X] andfngi+ ■ ■ ■ +/,„g, = 0, t'-l, • • • , t,
form a k[X]-module, a finite basis of which can be computed in a num-

ber of steps depending only on n, s, t, and d (or, also, only on a bound for

these).

This is known from [l]. Here k is an explicitly given field; and by

a step we mean a field operation in k.

An/ in k [Xi, ■ ■ • , XH] — 0 is said to be regular in (Xi, • • ■ , Xn) if

it is of (not necessarily positive) degree d in Xn and if the coefficient

of Xn is independent of Xi, • • • , Xn-\-

Lemma 2. Let/i, • • • ,f, be polynomials in k[Xit ■ • • , Xn], «^ 1,

with one of the /< regular in Xlt • • • , Xn, and let d be an integer^

max {deg /<}. Then (/i, • • • , f,)(~\k\X\, • • • , X„_i] can be con-

structed in a number of steps depending only onn, s, and d (or, also, only

on a bound for these).

Proof. We are looking for the g = gifi+ • • • +&/. with g,-E&[-X"]

and with degx„g = 0. Clearly we may assume /, j¿0 and that it is
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regular in Xi, • • • t Xn. Write gi = qif,+g[ with qu giEk[X] and

degxngi<degxB/.; and rewrite g as g = g'Ji+ ■ ■ ■ +(g,+qifi)f— we

may assume s ^2. Treating gi, ■ • • , g,-i similarly, we may assume

that degx„gv<degx„/», i=i, • • • , s — 1. Then deg^„ g«< 2á also ; so we

may assume degx„gt<2d for t = l, • • • , s. Writing g.-=23 ia^i and

fi=^JfijX1n, the condition degx„g = 0 can be rewritten as a homo-

geneous linear system in the g,y. By Lemma 1 we can compute a basis

for the ( • • • , gn, • ■ ■ ), and the corresponding g give a basis for

(fu ■ ■ -,f.)r\k[Xu ■ • -,x„-i].
Let A be an ideal in k[Xi, ■ • ■ , Xn]. By the ith leading coefficient

ideal Li(A) we mean the set of coefficients of Xn in the polynomials/

in A with degx„/á¿- The ¿th leading coefficient ideal is contained in

the (î + l)th, and their union is the leading coefficient ideal L(A) of A.

By the ith subcoefficient ideal Si(A) we mean the set of coefficients of

Xn in the polynomials/ in A with subdegx„/^i-

Thus Lemma 2 gives L0((fu • • • •/«))•

Lemma 3. Letfi, ■ ■ ■ ,f,be as in Lemma 2. Then for every i one can

construct L,((/i, • • • ,/,)) in a number of steps depending only on », s,

d, and i (or, also, only on a bound for these). One may also construct

polynomials hf, ■ • ■ ,hjf of degree¿i in Xn whose leading coefficients

will generate L¿((/i, • • • ,/»)), and one can bound the deg hf in terms of

», s, d, and i (or, also, in terms of a bound for these). Similar assertions

hold for Si((fi, ■ ■ ■ ,/<)), even without the regularity assumption.

The proof is like that of Lemma 2. In the case of Si, one has merely

to consider elements of the form gi/i+ • • • +£«/» with max {deg g¡\

^i, so one needs no regularity assumption to depress the degrees of

the gj.

Lemma 4. Letfi, ■ ■ ■ ,fs be as in Lemma 3 and let A = (flt • ■ • ,/,).

Then one can construct an X„ and the ideal A '. X„ such that A : X"n = A '.

Xn+1 in a number of steps depending only on », s, and d (or, also, only

on a bound for these). Correspondingly, one has a bound on p, on the

number of elements of some basis of A : Xn, and on their degrees.

This is known from [l]. We merely remark that no factorizations

are needed for this construction.

Lemma 5. Let A = (/i, • • • , /„) be as in Lemma 4. Then one can con-

struct L(A) in a finite number of steps depending only on », s, and d (or,

also, only on a bound for these). Correspondingly one has a bound on the

least p for which LP(A) =LP+\(A) =Lp+i(A) = ■ • • , on the number of

elements in some basis of L(A), and on their degrees.
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Proof. Let p be such that A:Xn = A :X„+1; by Lemma 4 we have

such a p at our disposal. Consider the Sk(A), k^p, and polynomials

A*, • • ■ ,Ai*} of subdegree^ k whose coefficients of deg k yield a basis

of St(A); and let d be a bound on their degrees, for k^p. Then

Ld(A) =L(A). In fact, let gE.A with degx„g = d+e>d. Subtracting

from g appropriate k[Xi, • ■ ■ , -X»_i]-linear combinations of the h™,

we get a g' of the same degree in Xn and with the same leading co-

efficient; so we may suppose g = 0 (X„+l). Then g/Xn is also in A,

whence Ld+e(A) =La+e-i(A), and the lemma follows.

Thus for A we have an integer e, depending only on n and d—we

omit the s as irrelevant for present purposes—which is a bound on the

least p ior which L„(A) = L„+i(A) = L„+ï(A) = ■ ■ ■ and is also a bound

on the degrees of some polynomials of degree p, p — 1, • • ■ in I,

whose leading coefficients yield bases for L„(A), L„-i(A), ■ ■ ■ . (We

will then have Le(A) =L(A), e will be a bound on the degrees of the

elements in some bases of L,(A), Le-i(A), ■ ■ ■ ; and there will be

polynomials of degree 2e whose leading coefficients yield bases for

Le(A), Le-i(A), ■ ■ ■ .) We may assume e(n, d) is monotone increasing

in each of the variables n, d.

For the ideals A,-, we wish similarly to have an e,-, but do not have

a regularity assumption on the Ai. To meet this we place X[ = unX\

+ • • • -\-Ui„Xn, i — 1, • • • , n, where the w¿y are n2 indeterminates

over k; then we work over k(u) and with the transformed variables

X[, ■ ■ ■ , X'n. We continue to have k(u)[X]Ai<k(u)[X]Ai+i; and

k(u) [X\Ai is regular with respect to X[, ■ ■ ■ , X'„. To simplify nota-

tion, we write k for k(u) and Xi, ■ ■ • , Xn for X[, ■ ■ ■ ,X'„. In effect,

then, we have the regularity condition for all ideals in question. Thus

for et we may take e(n,f(i)). We shall occasionally write e¡ for e(n,f).

If / is not already monotone increasing, we may replace it by a

function/' defined as follows:/(0) =/(0),/'(i + l) =■/'(») +/(»+l) + l.
Thus we may assume / monotone increasing. We do this. Then

fi(i) =f(j+i) is a function like/ for Aj < Ai+i < ■ •

For inductive purposes, we generalize our theorem. Instead of just

one chain ^40<^4i< • • • , we will consider a finite set of (not neces-

sarily strictly) ascending chains of ideals: ^4ó"C^lí0C • • ■ QAf,

t = \, • ■ ■ , m. We say that the set is strictly ascending if for each i,

i = 0, 1, • • • , 5 — 1, there is at least one t for which Af <Af+1. The

length of such a set of chains is by definition j+1. Our theorem is

now to be understood as asserted for any strictly ascending set of m

chains. The function /gives a bound f(i) for all the A¡°, t = í, ■ ■ ■ ,m\

we may assume/ monotone increasing. The bound gn(f) is to be re-

placed by a bound gn(m,f). The function e¡ continues to apply to the

Af iovt = \, ■ ■ ■ ,m.
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The function / may be allowed to involve », m as parameters.

We remark that if A, B are ideals with AQB and Li(A) =Li(B)

for every i, then A=B.

For any integer j, we get an ascending chain of ideals Lj(Aq))

CLj(A^)C ■ ■ • <ZL¡(Af) and thus, for t = \, ■ ■ • , m, m chains;
altogether, for j^e, we get (e-\-l)m ascending chains (e, any integer).

We have Le¡^)(A^)=L(Af) for t — l, • • • , m; and consider the

chains for j^e/(0). Assume for a moment that Lef^(Af) =L(Af)

for the 5 + 1 ideals Af. Then clearly the (e/(0) + l)m chains

Lj(Ao)C ■ ■ ■ CLj(Af), jeef(0), t = l, ■ ■ ■ , m, give a strictly
ascending set. By induction we have a bound g„_i((e/(0) + l)7», ef) on

5 + 1 ; we may assume that gB-i(í, e¡) is monotone increasing in i and,

inductively, that gn-i(i, e') ^gn-i(i, e") for any functions e', e" such

that e'(j) ^e"(j) for all nonnegative integers j. Otherwise put, we can

say that if 5 + 1 >gn-i((«y(0) +l)m, ej), then for at least one pair (i, t)

with i-£\+gn^((e,($)+\)m, e,), Lem(A?)<L^i)(A?); and also

Lef(f»(Af) <Lefd)(A®). In this way we would get a strictly ascending

set

Lefm(A0 ) C LeyiioC^t! ) C   • • ■   C Leinp)(Aip  );

we suppose *i, it, • ■ ■ to be taken successively as small as possible.

Then

ñú l+g_i((e/(0) + l)f»>íy);

and by monotonicity of e¡, we have a bound e¡(\ +gn-i((e/(0) + l)»t, ef))

on the degrees of the elements in some bases of the L.fa¡)(A®).

Similarly,

ii+i - Hi - 1) á 1 + gn-i((e/(is) + \)m, efil).

Define a function h(j) as follows:

*(0) = 0, h(j + 1) = h(j) + gn-i((ef(h(j)) + IK ^,0-

Using the monotonicity properties of g„_i, one sees by induction that

ijúh(j). Hence we have a bound ef(h(j)) on the degrees of elements

in some bases of the Lef(ij)(A\0). Hence, too, we have the bound

g„-i(m, es(h)) = 1 +b on 1 +p. Bringing the two parts of the argument

together, we get

Kb) + gn-x((e,(h(b)) + l)m, e,kW) = h(b + 1) = A(f_i(«, e,(h))),

which is monotone as required, as a desired bound on 5+1.    Q.E.D.

Remark. We could make more explicit how gn(m,f) depends on/,

but can do this only to a straightforward extent. It would be desirable
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to define g„+i in terms of gn, where a number of parameters j»i, • • • ,

mic may enter and gn+i(mu ■ • ■ , mk) will be defined in terms of gn at

possibly a different set of values for the parameters; also other func-

tions, recursively defined, might enter. We were able to give such a

definition for the special case treated in [2].

Let R = k[Xu • ■ ■ , Xn] and let R-mi + • ■ • +R-mz be a finite

P-module; correspondingly, let R-Mi+ • • ■ +R-M, be a free R-

module with free generators Mi, • • • , Mz. Let fiMi+ ■ • • +fzMz

be an element of R-Mx-\- ■ ■ ■ -\-R-Mz; by its degree we mean

max{deg/<}. We also call this a degree of /1W1+ • • • +fzmz.

Corollary. Let f(i) be a nonnegative integer for i = 0, 1, • • • and

consider ascending chains of submodules N0<Ni< • ■ ■ <N, of the

free R-module R-M\-\- • ■ ■ -{-R-Mz, where iV¿ has a basis of elements

of degree ^af(i). Then there is an integer gn depending only onf,n, and z

such that the length of any such chain is^gn. Moreover, one could ex-

plicitly write down a formula for gn in terms of f, n, and 2. A similar

statement holds for any finite R-module R ■ Wi+ • • • -\-R-mz.

Proof. We consider the case R-Mi+ ■ ■ • +R-Mz; the case

R-mi+ ■ ■ • R-mz follows immediately. The case z = l is a reformu-

lation of the theorem, and we make an induction on z. If /iAfi+ • • •

-\-fzMzÇzR-M\-\- • ■ ■ -\-R-Mz, by its leading coefficient we mean fz.

If iVis a submodule of R- M\-\- ■ ■ ■ -\-R-Mz, by its leading coefficient
ideal we mean the ideal of leading coefficients of the elements of N.

We obviously have L(N0)CL(Ni)C ■ ■ ■ CL(NS). Assume for a

moment that L(N0)=L(Ni) - • • • =L(N,). Using JV0, -/Vi we define

a submodule N[ of R-Mi+ • ■ ■ +R- Mz-i as follows: N[= {wi —w0| n0

EiVo, n1E.N1, leading coefficient of n0 = leading coefficient of Wi}.

Similarly, using N< and N0, we define N¡. Clearly N[<N¡< ■ ■ ■ <N't.

Moreover, using the given bases of JV0, • • • , Ns we can construct

(or think of constructing) bases for N[, ■ ■ ■ , N',; and in this way we

can put a bound on the degrees of elements in a basis of N[. By

induction we have a bound b on s-\-1. Otherwise put, we can say that

if s + i>b, then for at least one i^b + i, L(Ma)<L(Mt). By the

theorem (and an induction on 2), then one can compute a B such that

L(MB) =L(Mb+i) = • • • . Then, by another induction on 2, we can

complete the computation. The details may be omitted as being

parallel to those considered in the theorem.

Remark. The above was not written with a view to an application,

though, in fact, that is how the special case of [2] arose, but one can

easily envision applications. As a typical example, consider the prob-

lem of constructing the integral closure of a finite integral domain

k[xi, ■ • ■ , xn]; we think of k[x] given as k[X]/P, with P itself
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given via a basis (fi, • • • , /,); so some numerical data is involved.

This problem has been dealt with in [5], and a variant treatment is

given in [3]. In [5], the case k(x)/k is separable (i.e., separably

generated) was treated with the assumption that one can factor a

polynomial/^. In the general case, in [3 ], one uses some assumptions

concerning ^-independence; these are void in characteristic 0. Thus

the construction can be done in a finite number of steps for any

explicitly given field of characteristic 0; we restrict ourselves here to

this case, mainly so that there will be no doubt as to what a step is: it

is a field operation in k. In [4] we had shown how to test whether k [x]

is integrally closed; and in [3] in the case k [x] is not integrally closed

we show how to construct an element in k(x) integral over k[x] but

not in it. Repeating the process over and over, we get a strictly in-

creasing chain of A[x]-modules contained in a finite &[a;]-moduIe, so

the process must terminate; and one can say that one has shown how

to construct the integral closure of k[x]. One can, however, pose the

question of placing an a priori bound on the length of the chain in

terms of numerical information in the data (perhaps Kronecker

would have denied that a construction had been made unless this

bound was supplied). This point is intended and almost explicit in

[5 ] ; it is also met in [3 ] via a simple computational observation of

Dedekind. One can, however, also meet it by the corollary: One may

assume that xit • • • , xr are algebraically independent/^, that k[x] is

integral over k[xi, • • • , xr], and that xr+i is a primitive element of

k(x)/k(xi, • • ■ , xr). Let/£&[Xi, • • • , Xr+i] — 0 be the irreducible

polynomial satisfied by Xi, ■ ■ ■ , xr+i/k and let D(xi, • • ■ , xr) be the

discriminant oif(xi, ■ ■ ■ , xr, Xr+i). One knows that D is in the con-

ductor of k[x]; or, otherwise put, that the integral closure of k[x] is

contained in the k[xi, • • • , 3Cr]-module generated by Í/D, • • • ,

xf+i/D, where m = [k(x) :k(x\, • ■ ■ , xr)]. One can write the new inte-

gral element y\ (if there is one) in the form f\/D + • • • -\-fm-\XTn+l/D

with/i£&[*i, • • ■ , xT\; and one can place an a priori bound on the

deg fi. Then one has the data for repeating this construction and can

write down recursively defined bounds on the successive new integral

elements yi,y2, • ■ • • Applying our corollary, we get the desired bound.

Addendum. We give here a free treatment of an alternative proof,

suggested by the referee, for at least part of our results, avoiding,

however, his use of some logical notions.

We write down the most general form for a basis of A,-, that is, we

write down r(i) polynomials of degree ûf(i) with indeterminate co-

efficients, where r(i) =the number of power-products in X\, • • • , Xn

of degree^/(t). The condition Ai<Ai+i can then be expressed, using

the first of the results cited from Hermann, in terms of polynomial
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equations and inequations over k (and even over the prime field ko

of k) in the mentioned indeterminates: more precisely, it can be

written as a finite disjunction of finite conjunctions of polynomial

equations and inequations. An inequation Ä^O can be rewritten as

an equation zh —1=0 by introducing a new indeterminate 2. Then

one finds that the condition Ai<Ai+i can be expressed as a conjunc-

tion of a finite set {/„• = 0} of polynomial equations in indeterminates

d. The condition holds uniformly over all field extensions of k (or

even of ko). Hence if c< is a zero in an extension field of k of the set 5,

of polynomials/,/, then in &(c¿)[X] we get ideals Ai, Ai+i having

bases of the stated kind and with Ai<Ai+1. By the Hubert ascending

chain theorem, the sets So, Si, • • • cannot have a simultaneous solu-

tion in any extension field of k. Hence (by Zorn's Lemma) the poly-

nomials in So, Si, ■ ■ • generate the ideal (1) in k[c0, Ci, • • • ]; hence

a finite subset of the Si already generate (1). Hence already for a

finite s, ^4o<^4i< • • • <A, is incompatible. In this way we get the

existence of a bound 5. Moreover, a bound can be constructed. In fact,

using the elements of elimination theory (for which see, for example,

our paper in Crelle J. 239/240 (1970)), we test (by computations

over&o) the compatibility of A 0<Ai< ■ ■ •< A „successively for s = 1,

2, • • • , and eventually find an 5 for which it is incompatible. This s

gives a bound gn(f)- (See, however, our previous remark.)

This argument gives gn(f) as general recursive in/. For n = 2, fol-

lowing our argument, one can find a gn(f) primitive recursive in/.

Even for n^3, where primitive recursiveness looks doubtful, we still

think we have more than general recursiveness. As already noted, it

would be desirable to bring to a more satisfactory expression the na-

ture of the dependent of gn(m, f) on /.
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