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MODULAR CONGRUENCES AND THE BROWN-McCOY
RADICAL FOR SEMIGROUPS

D. R. LATORRE

Abstract. The Brown-McCoy radical Rg¡¡ for semigroups with

zero is characterized in terms of modular two-sided congruences.

The general notion of the C-radical of a semigroup is used to prove

that Ron is the p,-class containing zero, where p, is the intersection

of all modular maximal two-sided congruences of S. Thus when p, is

the identity relation, Roo = 0 and 5 is isomorphic to a subdirect

product of congruence-free semigroups with zero and identity. We

also link Rgo to representation theory.

1. Introduction. One of the early generalizations of the Jacobson

radical, the Brown-McCoy radical [2], offers the advantage that

simple rings, instead of dense rings of linear transformations, appear

in the subdirect sum representation of a semisimple ring. Moreover,

Sulinski [12] has shown the Brown-McCoy radical property to be

essentially the smallest radical property for which every semisimple

ring is isomorphic to a subdirect sum of simple rings.

The Brown-McCoy radical was studied for categories by Sulinski

[13] and for semirings by the present author [7]. Recently, Hoehnke

[4] has considered this radical for algebras and its application to

semigroups, particularly to semigroups with zero.

Radical theory for semigroups has taken its motivation largely

from the Jacobson radical for rings and, because this radical can be

described as the intersection of all modular maximal right ideals,

various semigroup radicals have effectively used modular maximal

right congruences (see references [5], [ó], [8], [lO], and [ll]). How-

ever, the Brown-McCoy ring radical can similarly be characterized as

the intersection of all modular maximal two-sided ideals. Thus the

purpose of this article is to present an alternate approach to the

Brown-McCoy radical for semigroups with zero, based on the notion

of the C-radical of a semigroup due to Tully [3, paragraph 11.6], and

thereby relate this radical to modular maximal two-sided congruences.

These congruences have already been considered in some detail by

Oehmke [9] and Arendt [l] with regard to radical theory for semi-

groups.
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In §4 we characterize the Brown-McCoy radical for a semigroup 5

with zero as the p,-class containing zero, where p, denotes the inter-

section of all modular maximal two-sided congruences on S. There-

fore p, is the identity relation on S if and only if S is isomorphic to a

subdirect product of congruence-free semigroups with identity, and

in this case the radical is zero. Oehmke, and later, Arendt, loe. cit.,

have further characterized the finite semigroups and bands, respec-

tively, for which p, is the identity relation. We also determine a con-

nection between this radical and representation theory in §5.

2. Preliminaries. By a type of semigroups we mean a class C of

semigroups satisfying (i) if S£C and 5 is isomorphic to S' then

S'G C, and (ii) any semigroup 5 with | 51 = 1 is in e.

For any semigroup S and any type C let 6, denote the set of all

congruences ir on 5 of type C, i.e., all a such that S/aGC. The C-

radical of 5 is defined by C-rad 5 = 0 {a : a G C,}.

We henceforth write p, for C-rad 5. The derived type C' of C is the

class of all semigroups S such that p, = i, the identity relation on S. If

SE. C we say that 5 is C-radical-free. Always CÇ e'.

Now let C be a type of semigroups such that every SE& has a zero

element. For each irGe, let z0 denote the zero of S/<r, and define

Ä,=i?.(e) = n{z,:(rGei}.
Since each za is an ideal of S, either R, is empty or is itself an ideal of

S. If R, is not empty it is, of course, the unique p,-class that is an ideal

of 5. Thus if 5 is C-radical-free and R, is not empty, then 5 has a zero

andi?,= {0}.

A two-sided congruence <r on S is called modular with respect to an

element a G 5 provided the (r-class of a is the identity of S/a. We

define an element a G -S to be C-regular if the only congruence on S of

type C which is modular with respect to a is the universal relation w on

5. A subset X of 5 is called C-regular if every element of X is C-

regular.

Theorem 1. For any semigroup S either R, is empty or R, is a C-

regular ideal of S.

Proof. If aER, and a is not C-regular then there is a congruence

t^co of type C on S modular with respect to a. Since a(E.R.

= n{2«r:<rGC,} we have aGzr, whence the r-class of a is the zero of

S/t. Thus I S/t\ = 1, contrary to t^oj.
In §3 we characterize R„ for a more restricted type C, as the great-

est C-regular ideal.

Now define R, to be the set of all x G 5 for which the ideal (x) of S

generated by x is C-regular.
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Theorem 2. R„, if nonempty, is a Q-regular ideal of S which contains

every Q-regular ideal of S. In particular, R.ç^R,.

3. Particularly simple semigroups. A semigroup 5 is said to be

congruence-free if it has no two-sided congruences except i and w. A

congruence a on a semigroup 5 will be called maximal if a=u or else

a5¿o) and there is no congruence strictly between a and u. We need the

following well-known result.

Theorem 3. A congruence a on S is maximal if and only if S/a is

congruence-free.

We call a congruence-free semigroup having a zero and identity

element particularly simple. The class of all particularly simple

semigroups is a type of semigroup, and for the remainder of this paper

we denote this type by C. The following are immediate.

Theorem 4. A congruence a on S belongs to C, iff & is a modular

maximal congruence such that S/a has a zero.

Theorem 5. Let S be a particularly simple semigroup, \S\ > 1. Then

(a) the identity eof S is not Q-regular,

(b) e£R„

(c) 5 is Q-radicalfree,

(d) R.= {0},
(e) 5 is a 0-simple semigroup.

For completeness we state:

Theorem 6 [3, Theorem 11.23]. // 5 is any semigroup, S/p„ is Q-

radical-free.

Theorem 7 [3, Exercise 2 (a), p. 278]. A semigroup S is Q-

radical-free if and only if it is isomorphic to a subdirect product of par-

ticularly simple semigroups.

Theorem 2 shows that for any type C of semigroups, always

R,QR,. We now prove that for the type C of particularly simple semi-

groups, R, = Ra.

Theorem 8. Let C be the type of all particularly simple semigroups.

For any semigroup S, R, = R,.

Proof. Let &EÄ, and o-ÇzQ.. Consider the ideal (b„) in 5/cr

generated by bcE:S/a. Now (b„) = (b)v, where »/¡S—»S/a is the natural

mapping. If xE(e„), say x = yv with y G (b), then y is C-regular in 5. It

follows easily that x is C-regular in S/a, whence (b,) is C-regular.
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Thus b,E~R~si<- But Rsi* = {z,}. For if a„ (aES) is in Rsi* then (öff) is

a C-regular ideal of S/a, so that (a„) = {z„} or (a,) = S/a since 5/ff is

0-simple if a^co. If (#*)?*= {z„\ then cr^w and the identity of S/<r is

C-regular, contrary to Theorem 5. Thus (a„) = {zff} and Rs/,= {%*}■

From b, = z<, we have bEft{z„:aE&,} =Rs-

4. The Brown-McCoy radical. The Brown-McCoy radical for

semigroups [4], as for rings [2], was developed as a special case of

more general radicals. Before linking this semigroup radical with the

results of §§1-3, we indicate its definition, extracting from [4].

For any semigroup 5 let C(S) denote the lattice of all congruences

on S and let G be the mapping G:S-^C(S) defined as follows: for each

aES, G(a) is the (two-sided) congruence on 5 generated by the

relation Xa = {(ax, x) : x G S} on S.

For each congruence a on S, define

f° = 0,   if S/a has no zero;

= the zero element zff of S/o-,    if S/a has a zero.

Since for each a E S, G(a)EC(S), we consider G (a)0. Let G°(a) = G(a)°.

The element aES is said to be G°-regular if aEG°(a). Let a(0) denote

the intersection of all <r° that contain aES. The Brown-McCoy

radical Ro" = Rg°(S) of 5 is defined to be the set RG0:=Rol>(S)

= {aG5:a(0>isG°-regular}.

Now for any semigroup S with zero, and any <tEC(S), we have

a"={xES:(x, 0)G<r}. Thus 0(0>={o}, and 0 is G°-regular so 0

ERo"(S). Clearly a is G°-regular provided (a, 0)EG(a). An explicit

characterization for G (a) is given in [4].

The above notion of G°-regularity coincides with that of G-reg-

ularity for rings used in the definition of the Brown-McCoy ring

radical. (An element a in a ring R is G-regular if a belongs to the ideal

of R generated by the set {ax+x:xER} ;see [2].) However, it can be

shown that an element a in ring R is G-regular if and only if the only

maximal congruence on R modular with respect to a is the universal

relation. We are thus led to formulate the following theorem.

Theorem 9. Let S be a semigroup with zero. An element aES is G°-

regular if and only if the only maximal congruence on S modular with

respect to a is the universal relation.

In the terminology of the preceding section: An element aES is G°-

regular if and only if a is G-regular, where C is the type of particularly

simple semigroups.
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Proof. Suppose <r is a proper maximal congruence on S modular

with respect to a. Then Xa= {(ax, x) :x£S} Ç<r, so that G(a)Ç.<r. If a

were G°-regular then (a, 0)EG(a)C<j, whence a„ is both the zero and

identity of S/a, contrary to a^a. Thus a is not G°-regular.

For the converse, suppose a is not G°-regular, i.e. (a, 0)(£G(o).

Using Zorn's lemma, let a be a congruence on 5 maximal in the class

of all congruences on S that contain G(a) but not (a, 0). Now a is a

proper maximal congruence on S. For if ßE;C(S) and «Cß then

(a, 0)Gj3. Let Xß denote the ß-class containing any xES. Since

XaQG(a)C.aC.ß we have Xß = (ax)ß = aßXß = 0ßXß = 0ß for every x£S,

and so |3 = w and a is maximal. Because a is maximal, S/a is con-

gruence-free, and aa is a left identity for a since XaQot. But any one-

sided identity of a congruence-free semigroup with zero is necessarily

a two-sided identity, so a is therefore a proper maximal congruence

modular with respect to a.

We now give the main result of this work.

Theorem 10. Let Q be the type of all particularly simple semi-

groups. For any semigroup S with zero, Rs = Rs = Rq°(S).

Proof. By Theorem 3.4 of [4], RG«(S) is an ideal of S, and Ra°(S)

is by definition G°-regular. Thus by Theorem 9, Rg"(S) is a C-regular

ideal. Since RS = RS is the greatest C-regular ideal of S, we have

Rg°(S)QRs = R,.
Conversely, if a£5 and a(£i?G0(-S) then a(0) is not G°-regular.

Thus let e£ö<0) such that e is not G0-regular. By Theorem 9, there is a

proper maximal congruence a on 5 modular with respect to e. Since

a^u, e(fczr. But then a^z^ = ff°, as otherwise eGa(0)Ç(r0 = 2(r. Since

öcjz,, and o-£C„ certainly a (£R3 = f){zc:<r G Cs}.

Theorem 10 shows that the Brown-McCoy radical Rg'ÍS) is the

p,-class which contains zero (alias Re), where p„ is the intersection of

all modular maximal congruences on S. By Theorem 7, p, = i if and

only if S is isomorphic to a subdirect product of particularly simple

semigroups; in this case Ra«(S) =0. Oehmke [9, Theorem 28] has

further characterized the finite semigroups for which p, = t, and

Arendt [l, Theorem 16] has done the same for bands.

5. Relation to representation theory. By a representation of a

semigroup 5 (by transformations of a set M) we mean a homomor-

phism 0 of 5 into the full transformation semigroup Tm on M. For the

associated notion of a (right) operand (or S-system), and the more

special notion of an operator equivalence on an operand, we refer to

[3, Chapter 11] or [6].
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If 5 is a semigroup, we denote by S, the operand over 5 associated

with the regular representation of S, i.e., the operand in which 5 acts

on itself by right multiplication. The operator equivalences on S. are

precisely the right congruences on the semigroup S. For any right

congruence a on 5 we denote the operand S,/a by S/a; it consists of all

the <r-classes x„ of S„ with the product of x, by any element a E S

defined by x^a = (xd)„. We are particularly interested in the case

where a is also a two-sided congruence on S. In this event, the operand

S/a and the factor semigroup S/a are related by x,a= (xa)<, = x„a,.

That is, the product in the operand S/a of x, by aES coincides with

the product in the semigroup of x, and a,. For notational convenience,

let (S/a)a = {x„a : xc G S/a}.

Let R be any ring whose Brown-McCoy radical, G(R), is not R. If

\Ma}aE8 denotes the set of all modular maximal two-sided ideals of

R, it is well known that

G(R) =   D Ma =  D (Ma'.R) =  H (Ôa:R/Ma),

where (Ma±R) = {aER:RaQMa}. Thus aEG(R) if and only if

(R/Ma)a = Oa for all aE&- Motivated in this way, we proceed as

follows.

Let C be the type of all particularly simple semigroups. For any

semigroup S, define

R¡ = R! (C) = {aES: (S/a)a = z, for all a E 6,}.

If C, = {co} then R', = S, but R', may be empty otherwise. If 5 has a

zero element 0, then OER',- Our basic result for R', is the following.

Theorem 11. Let C be the type of all particularly simple semigroups.

For any semigroup S with zero, Rg = R, — R, — R o°(5).

Proof. If aER, then aEz* for every (rGC„ so that aa = z* in the

semigroup S/a. Thus for any x, in the operand S/a we have x,a

= (xa), = x„av=xvz, = z„, whence (S/a)a = z„ and a ER,-

Conversely, let a ER't- If aE C, then (S/a)a = z„ so that x„a = z„ for

all xcES/a. Since (rGC„ S/a has an identity element e„ (eES), and

e„a = (ea)<, = e,a<,=a,,. Thus a(r = zir so o£z„. It follows that aER,-
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