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ON VECTOR LYAPUNOV FUNCTIONS1

S. G. DEO2

Abstract. It has been proved that the use of a vector Lyapunov

function is more advantageous in certain situations rather than a

scalar function. Moreover, each function needs to satisfy less rigid

requirements. In this paper a new situation has been considered

where vector Lyapunov functions play a further useful role. For

this purpose, a new type of stability, namely, strict partial sta-

bility has been defined. The principal tool employed is the second

method of Lyapunov and a comparision theorem of a more general

type.

1. Introduction. In an interesting paper Bellman [l] has raised a

question whether it might be more convenient, in certain situations,

to use a vector Lyapunov function rather than a scalar function. The

answer is positive and it has been pointed out that the application of

several Lyapunov functions is indeed useful [4], [5]. The object of

the present paper is to extend this idea further.

Lyapunov's principal theorems give sufficient conditions for the

stability, asymptotic stability and instability of systems. During

the last few years these stability concepts have been refined and

further generalized in several directions. In particular, the concept of

partial stability has been studied by Corduneanu [3]. This type of

stability is useful from the practical point of view since in many situ-

ations one is interested in the behaviour of some variables only. This

idea suggests that it is possible to consider the behaviour of the re-

maining variables and thus this approach leads to the concept of

strict partial (s.p.) stability.

While proving the main results in [3], a differential inequality

has been employed to study the partial stability properties. This

technique involves estimation of a function, satisfying differential

inequality, by the maximal solution of a related differential system.

Such differential inequalities have been used in considerable details

to solve a number of problems in the analysis of systems and the most

comprehensive text for such a literature is [4].
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Following the above approach, it is believed that the other type of

extremal solution, namely the minimax solution, has not yet been

exploited to study the properties of differential systems. The exis-

tence of this type of critical solution has been proved by Burton and

Whyburn [2] under certain monotonie conditions. We employ below

the second method of Lyapunov and the minimax solution of the

related system to study the strict partial stability properties of differ-

ential systems.

2. Notation and definitions. Let J denote the interval 0 = ¿< oo and

Rn—the «-dimensional Euclidean space. Let HT= {zÇ_Rn, ||s|| <t,

t > 0} where 11 • 11 denotes a suitable norm in R". Consider a differential

system

(2.1) z = Z(t, z)

or a more explicit form

(2.2) x= X{t,z),       y- Y(t,z),

where x, XElRp, y,YE.Rg, p+q = n and Z is a real «-vector function

defined and continuous on JX.Hr. Suppose that the function Z is

sufficiently smooth in order that, for every (t0, z0)ŒJXHT, there

exists a solution z(t; to, z0) = (x(t; ta, z0), y(t; t0, z0)) depending con-

tinuously on t0, 20 and equal to z0 at t0. We do not assume the unique-

ness of solutions of the system (2.1). Let Z(t, 0) = 0, for every /£/, so

that (2.1) admits the trivial solution.

We say that a real valued function a(r) belongs to class K if it is

defined, continuous and strictly increasing on 0^r<<*> and if it

vanishes at r = 0:a(0) =0. Our interest lies in the following stability

properties. The trivial solution is said to be:

(Pi) s.p. equistable if given 0<e<T and t0E_J, there exists a

function 5 = S(/0, e) which is continuous in to for each e and a ti>t0

such that \\x(t; to, z0)|| <e for ¿ = i0 and \\y(h; to, z0)|| è« whenever

IWI^S;
(P2) s.p. uniformly stable if the 5 in (Pi) is independent of t0;

(P3) s.p. quasi-equi-asymptotically stable if, for each 0<e<r, ¿o£/,

there exist positive numbers Ô0 = 50(io), T= T(t0, e) and ¿i>/0such that

||îc(/;<o, z0)|| <eîor t^to+Tand \\y(k;t0, z0)\\ 2:e whenever ||z0|| á50;

(P4) s.p. quasi-uniformly asymptotically stable if the numbers 50 and

T in (P3) are independent of to;

(Ps) s.p. equi-asymptotically stable if (Pi) and (P3) hold simul-

taneously;

(P6) s.p. uniformly asymptotically stable if (P2) and (P4) hold

simultaneously.
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3. Related system. Let X(t, u) be a 2-vector function defined and

continuous on the product space JXR2. LetXi(/, u\, u2) be monotone

decreasing in u2 for each (t, U\) and X2(¿, Mi, u2) be monotone decreasing

in «i for each (t, u2). Consider the differential system

(3.1) ù = X(t, u),   u(t0; t0, «o) = u0;       (t ^ t0).

We note that the system (3.1), in general, may not possess the

maximal and minimal solutions since the existence of these extremal

solutions need that \(t, u) should be quasi-mono tonic in m [2].

However, it has another critical solution known as minimax

(1 max-1 min) solution. It has been proved in [2] that under the given

monotonicity conditions the minimax solution for the system (3.1)

exists.

Further, let S = JXD where D is an open set in HT containing the

origin and let v= [vi, v2] be such that

(3.2) m G C[J X HT, R+]    and   «, G C\S, R+¡ ;

where S denotes the closure of 5;

(3.3) V\(t, z)—»0 as ||z||—>0 for each /£/, it is locally Lipschitzian

in z;

(3.4) v2(t, z) =0 for z(ES — S, v2 is bounded on S and locally Lip-

schitzian in z.

Define, for (t, z)(E.S,

1   r
(3.5) v*(t, z) = lim sup — [v(t + h, z + hZ(t, z)) - v(t, z)].

ä-»o+     h

The principal tool employed to prove the main results is the following

lemma.

Lemma. Let the vector function \(t, u) in (3.1) be such that X2(t, m)^0.

Let the function v(t, z) satisfy conditions (3.2), (3.3) and (3.4). Suppose

that u(t; to, uo) is the minimax solution of (3.1) existing for t^t0 and

the function v*(t, z) of (3.5) satisfies the inequalities

(3.6) (-l)i+1*i(t, z) Ú (-Di+1Xi(t, v(l, z))        (i = 1, 2)

for (t, z) G5. Let z(t;t0, zü) be any solution of (2.1) such that

(3.7) (-iy+hi(t0, z0) g (-\)i+iUio,       (to, zo) G S.

Then

(3.8) (-\y+hi(t,z(t;to,Zo))û(-\)i+1Ui(t;to,Uo)        (i = 1, 2)

for(t,z)ES.
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Remark. The proof of this lemma can be formulated by following

the argument of Theorem 1 of [2]. The details are omitted. However,

it is important to note that the solution z{t; t0, z0) belongs to 5 under

the given conditions. For, choose {to, z0)(ES, Zo^O; then, due to (3.6),

v* (t, z) ^ Xî(î, vt(t, z), v,(t, z)) = 0.

Further, since v^ is Lipschitzian by hypothesis, we have

(3.9) v*(t, z{t; to, zo)) = v2(t0, z0) > 0.

Further, since v2{t, z) =0 for all (/, z)£S —S, it follows from the in-

equality (3.9) that (t, z(t; t0, z0))Ç_S for t^t0.

Now, let u(t; to, Uo) be any solution of (3.1). Corresponding to

properties (Pi) to (Pe) we can formulate properties (Px ) to (P6 ) for

the system (3.1). For example, corresponding to (Pi), we have:

(Pi) given 0<£<t and toEJ, there exists a function d = d(to, «),

which is continuous in /0 for each € and a ¿i>/0 such that u\{t; to, Wo)

<e for i = /o and for arbitrary small u2o>0, u2(t; to, Mo) is either

unbounded or indeterminate whenever Wio^á and «20 >0.

4. Main results. We now establish the following theorems which

give sufficient conditions for properties (Pi) to (Pe) to hold in terms

of vector Lyapunov functions.

Theorem 1. Let the assumptions of the lemma hold and let the vector

function v described above be such that, for (t, z) £/XHr,

(4.1) KIND ̂ v¿t, z),    b e K.

Then the properties (P?), (P*) and (P*) imply the corresponding prop-

erties (Pi), (P3), and (P5) respectively.

Proof. Let 0<£<t. Since (Pf) holds, given b(e)>0, t0Ç_J, there

exists a positive function d = d(t0, e), which is continuous in to for

each e, such that

(4.2) mit; t0, Mo) < bie),        t = to,

whenever

(4.3) «io è d   and    m2o > 0.

Since the assumptions of the lemma hold, we have, for {t, z{t; to, Zo))

es,
(4.4) vi(t, z(t; t0, Zo)) ^ Ui(t; t0, «o)

whenever
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(4.5) »i(¿o, Zo) ̂  Mi0;       (t0, 20) G 5.

We choose v(to, z0)=Uo; then the fact that Vi(t, z) is continuous

and Vi(t, z)—>0 as ||z||—»0 for each t yields, in view of (4.3) and (4.5),

that there exists a ô = ô(to, e), which is continuous in t0 for each t, such

that the inequalities

||zo|| á 5,        t>i(/0, Zo) è d,

hold simultaneously. We now show that with this 5 the property (Pi)

holds. For, otherwise, there exists a 7>£0 for which

\\x(J; to, Zo)\\ = e    and    \\x(t; t0, z0)|| á «,       í0 á ¿ I Í,

whenever ||zo|| áS. But then we find

b(t) ^ »i(7, z(7; ¿o, Zo)) á Mi(7; /0, m0) < 6(e)

by virtue of (4.1), (4.2) and (4.4), which is impossible. Also, we have,

for (f,*) es,

(4.6) v2(t, z(t; to, zo)) è u2(t; t0, u0),

by (3.8). Further, since v2(t, z) is bounded by assumption, according

to property (Pi), the inequality (4.6) cannot hold if we assume that

the trivial solution of (2.1) is stable. Thus, the trivial solution is

stable with respect to x-components but it is unstable with respect to

y-components. This proves that the property (P, ) holds. To prove

that (P3) implies (P8), let b(e)>0, t0E:J, be given. Then there exist

positive numbers d0 = do(to) and T— T(t0, e) such that

(4.7) Mi(/; to, M0) < b(t),       t^to+T,

whenever uwûd and w20>0.

As in the previous case, we choose a number <50. Now, suppose that

there is a divergent sequence [tk\, tk^t0+T, such that \\x(tk; t0, Zo)||

= € whenever 11z0|| ̂50. Then, in view of (4.1), (4.4) and (4.7), we have

b(e) ^ vi(tk, z(tk; h, z0)) Ú Ui(tk; to, uB) < b(e)

which is impossible. This proves that \\x(t; t0, z0)\\ <e for t^t0+T.

As in the previous case, we can show that the trivial solution is un-

stable with respect to y-components. This proves that (P3 ) holds.

Now, it is easy to conclude that (Ps ) implies property (P6).

Theorem 2. Let the assumptions of the lemma hold and let the vector

function v described above be such that, for (t, z)EJXHT,

(4.8) ft(||*||) á v1(t, z) Í a(\\z\\),       a,bEK.
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Then the properties (P*), (P*) and (P*) imply the corresponding proper-

ties (P2), (P4) and (P6) respectively.

Proof. The proof is similar to that of Theorem 1 except that the

function aÇzK assumed in (4.8) helps to determine S in (Pi), 5o and T

in (P2) respectively, independent of to. The details are omitted.
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