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THE CENTER OF THE FREE PRODUCT OF
DISTRIBUTIVE LATTICES1

RAYMOND BALBES

Abstract. The object of this paper is to show that for members

L and M in the class of distributive lattices with zero and unit, the

center of the free product of L and M is the free product of their

centers.

We can assume that L and M are subalgebras (that is (0, 1)-

sublattices) of their free product, which we denote by L*M. This

means [2] that LVJM generates L*M and for au a%EL, bu b2EM:

(1) aibi ^ö2 + 62    implies    ai ^ a2    or    ¿>i ̂  62.

Since the center C(L) of L is exactly its subalgebra of comple-

mented elements [l, p. 67], we have immediately that C(L)*C(M)

QL*M. But an element x= ^?=i a,o,', where p^i, a,GG(L), &,•

EC(M), has a complement, namely H?_i (aí+&í)> where a[ is the

complement of ai in L and b[ is the complement of &,• in M. So C(L)

*C(M)QC(L*M).
To prove the reverse inclusion, it suffices to show that if x E C(L*M)

and

p
(2) x = X fli*í>       Í = 1>   af°i ?* °>   a¿ G i,   &í G Ai,

i-l

then any ai that appears in (2) can be replaced by a member of C(L)

and still leave (2) valid. Indeed, if this replacement is possible then

each a,- can be successively replaced by members of C(L) and then the

whole process repeated for each ô,-; thus showing that xEC(L)*C(M).

Now to prove that this replacement is possible suppose x^O, 1 has

the representation in (2) and that x' is the complement of x in

C(L*M). So

1

x' = 22 «A   f°r some q 2: 1, a, E L, ßj E M.
j=i
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We will replace ai by an element of C(L). If ai G C(L) we are finished

so suppose aiGG(L). Noting the convention E 0 = 0 and the fact

that (1) implies that for each jG {l, •■•>?} either aia.j = () or b$j = 0,

we have :

(ai+Èbi) + CZ {«<\ai«i = 0} + E{&| b& =0J)

(3)
è i + *' = 1.

Now aiE {a^ax«,^} =0 so ai+E {a3| aiay = 0} j¿l. Applying (1)

to (3) we obtain  E?-2 ¿»<+ E {A|¿A=0} =1. This implies

(4) ¿»x á E **
1-2

Let {5i, ■ • • , ST\ be all subsets S ol {b2, ■ ■ ■ , br) with the prop-

erty that &ig E (5). Note that from (4) and (2), r^l and 5,^0,

iorj=l, • • • , r. Set Tj= [ak\ bkÇzSj\ for j = l, • ■ ■ , r. We will show

thattherequiredreplacementforaiis^l =ai-r-JJ(r,)+ • • • + ri(TV).

Clearly x=^Ab1+a2b2+ • • • +apbp.  On the other hand, for each

¿e{i, • • •, r}, IRwáI(Zí)E (Sy)^E {afalheSj} ¿*. so
vlèi ííx and

(5) x = Abi + aj)ï + ■ ■ ■ + apbp.

It remains to prove A G C(L). Let 3 be the family of all sets T which

consist of exactly one member from each of the sets 7\, • • • , Tr. For

such a TG3, (5) yields

(6) (¿ + E00 + L{*«l«f£r,ifc2})
+ ( E M ¿«i = 0} + E {ßi\ bßi = 0}) = x + x' - 1.

Now if Eí^k.Cr, ¿^2} + E{ft|ôi/3J}=l then

ôia E{Mfl'£r,iè2}    so    {ô,-|a,C r,/â 2} =5y

for some j'G {l. ■ • • r »"}■ But this is impossible, for by the definition

of T, there is a member ai^Tjf~\T, where ¿oè2, so

bt,eSi- {bi\ai^T,i = 2} = 0.

By applying (1) to (6) we obtain for each TG3:

^ + E(2r,) + Ei«;U«i = 0} =1.

Thus,
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1 = A. + n{ £ (T) I T G 3} + E {«¿I Aa¡ = O}

= A + (U(Ti) + ■■■ + U(Tr)) + E {aj\ Aaj = 0\

= A + H{«j\ Aas=0}.

This means that A and £ i^j'I Aa, = O} are complements in Z,, which

completes the proof.
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