EXISTENCE AND CONTINUOUS DEPENDENCE FOR A CLASS OF NONLINEAR NEUTRAL-DIFFERENTIAL EQUATIONS

L. J. GRIMM¹

ABSTRACT. This paper presents existence, uniqueness, and continuous dependence theorems for solutions of initial-value problems for neutral-differential equations of the form

$$x'(t) = f(t, x(t), x(g(t, x)), x'(h(t, x))), \quad x(0) = x_0,$$

where f, g, and h are continuous functions with $g(0, x_0) = h(0, x_0) = 0$. The existence of a continuous solution of the functional equation z(t) = f(t, z(h(t))) is proved as a corollary.

1. Introduction. In this paper we consider the initial-value problem (IVP) for the functional-differential equation of neutral type

(1)
$$x'(t) = f(t, x(t), x(g(t, x(t))), x'(h(t, x(t))),$$

with the initial condition

(2a)
$$x(0) = x_0$$
.

Here f(t, x, y, z), g(t, x) and h(t, x) are continuous functions with $g(0, x_0) = h(0, x_0) = 0$. We assume further that the algebraic equation $z = f(0, x_0, x_0, z)$ has a real root z_0 , and we require that

(2b)
$$x'(0) = z_0$$
.

Existence and uniqueness theorems for IVP's for equation (1) have been proved by R. D. Driver [1] for the case where h(t, x) < t, and recently by J. K. Hale and M. A. Cruz [3] provided that f is linear in the argument x'(h(t, x)). We prove an existence theorem without these hypotheses, and a uniqueness theorem in case h is independent of x. Hale and Cruz [3] have also obtained continuity theorems for the quasilinear case mentioned above, while Driver [2] has proved a continuity theorem for IVP's for equations of the form (1) in case g and h are both independent of x, and h(t) < t for all t. We obtain here a continuous dependence result for the IVP (1)-(2a)-(2b) provided that the function h is independent of x. Finally we obtain a result on existence of continuous solutions of certain nonlinear functional equations as a corollary of our existence and uniqueness theorems.

Received by the editors November 4, 1970.

AMS 1970 subject classifications. Primary 34K05; Secondary 34K05.

Key words and phrases. Neutral-differential equations, functional equations, continuous dependence, existence theory.

¹ Research supported by National Science Foundation Grant GP 20194.

2. Existence. Let $\alpha > 0$, and let $J = [-\alpha, \alpha]$. We shall make the following assumptions concerning the IVP (1)-(2a)-(2b):

(i) f(t, x, y, z) is continuous in some region in R^4 containing

$$P = \{(t, x, y, z) : |t| \le \alpha, |x - x_0| \le \beta, |y - x_0| \le \beta, |z| \le M\}$$

where α , β and $M > |z_0|$ are positive constants. We assume that $\alpha \le \beta/M$ and that $\sup_{(t,x,y,z)\in P} |f(t,x,y,z)| < M$.

(ii) g(t, x) and h(t, x) are continuous in the projection \tilde{R} of P in the (t, x) space; g and h both map \tilde{R} into J, with $g(0, x_0) = h(0, x_0) = 0$, and h(t, x) satisfies the Lipschitz conditions

$$|h(t_1, x_1) - h(t_2, x_2)| \le k_1 |t_1 - t_2| + k_2 |x_1 - x_2|$$

for all (t_1, x_1) , $(t_2, x_2) \in R$, where k_1 and k_2 are nonnegative constants with $k_1 + k_2 M \le 1$.

(iii) The function f(t, x, y, z) satisfies the Lipschitz condition

$$|f(t, x, y, z_1) - f(t, x, y, z_2)| \le L_z |z_1 - z_2|$$

for all (t, x, y, z_1) , $(t, x, y, z_2) \in P$, where $L_z < 1$.

We shall prove the following theorem:

THEOREM 1. Under the hypotheses (i)–(iii), the IVP (1)–(2a)–(2b) has at least one solution which is continuously differentiable on J.

PROOF. Let X be the Banach space of continuous functions on J with uniform norm. Let

$$S = \{z \in X : z(0) = z_0, ||z|| \leq M\}.$$

Define the mapping $T: S \rightarrow S$ as follows: for $z \in S$, let

$$Tz(t) = f(t, I(z, t), I(z, g(t, I(z, t))), z(h(t, I(z, t)))),$$

where

$$I(z, t) = x_0 + \int_0^t z(s) ds.$$

It is easy to verify that T is a continuous map of S into S. By continuity of f, if $z \in S$ and $t \in J$, for each $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that if t_1 and $t_2 \in J$, and $|t_1 - t_2| < \delta(\epsilon)$, then

$$| f(t_1, I(z, t_1), I(z, g(t_1, I(z, t_1))), z(h(t, I(z, t)))) |$$

$$- f(t_2, I(z, t_2), I(z, g(t_2, I(z, t_2))), z(h(t, I(z, t)))) | < \epsilon.$$

Let

$$S_{\epsilon} = \left\{ z \in S \colon \left| \ z(t_1) - z(t_2) \right| \le \epsilon / (1 - L_z) \right.$$
for all $t_1, t_2 \in J, \left| \ t_1 - t_2 \right| \le \delta(\epsilon) \right\}.$

If $z \in S_{\epsilon}$, and if $t_1, t_2 \in J$ with $|t_1 - t_2| \leq \delta(\epsilon)$, then

$$|Tz(t_1) - Tz(t_2)| \le \epsilon + \epsilon L_z/(1 - L_z) = \epsilon/(1 - L_z).$$

Thus $TS_{\epsilon} \subset S_{\epsilon}$. We note that S_{ϵ} is closed, bounded and convex. Let $S_0 = \bigcap_{\mathbf{a} \text{ll } \epsilon > 0} S_{\epsilon}$. S_0 is nonempty, closed, bounded and convex, and by the Ascoli-Arzela theorem, S_0 is compact. Since $TS_{\epsilon} \subset S_{\epsilon}$ for all $\epsilon > 0$, $TS_0 \subset S_0$. Hence by the Schauder theorem, T has at least one fixed point z(t). Integration yields the required solution of (1)-(2a)-(2b).

3. Uniqueness. In case h(t, x) is independent of x, we obtain the following uniqueness result:

THEOREM 2. In addition to the hypotheses of Theorem 1, suppose that:

- (iv) $h(t, x) \equiv h(t)$ is independent of x.
- (v) f and g satisfy the Lipschitz conditions

$$| f(t, x_1, y_1, z_1) - f(t, x_2, y_2, z_2) |$$

$$\leq L\{ | x_1 - x_2| + | y_1 - y_2| \} + L_z | z_1 - z_2|$$

with $L_z < 1$;

$$|g(t, x_1) - g(t, x_2)| \le L_g |x_1 - x_2|,$$

uniformly in their domains.

Then there exists γ_0 , $0 < \gamma_0 \le \alpha$, such that there is a unique continuously differentiable solution of the IVP (2)-(3a)-(3b) on $[-\gamma_0, \gamma_0]$.

PROOF. Under the hypotheses of the theorem, if $z \in S$, $0 < \gamma \le \alpha$, and $t \in [-\gamma, \gamma]$,

$$| Tz_{1}(t) - Tz_{2}(t) | \leq L \{ | I(z_{1}, t) - I(z_{2}, t) | + | I(z_{1}, g(t, I(z_{1}, t))) - I(z_{2}, g(t, I(z_{2}, t))) | \} + L_{z} | z_{1}(h(t)) - z_{2}(h(t)) | \leq L\gamma ||z_{1} - z_{2}|| + L\gamma ||z_{1} - z_{2}|| + LL_{g}M\gamma ||z_{1} - z_{2}|| + L_{z}||z_{1} - z_{2}|| = [\gamma L(2 + ML_{g}) + L_{z}]||z_{1} - z_{2}||.$$

Hence if γ is sufficiently small, the mapping T is a contraction, and the statement of the theorem follows by integration.

REMARK. A uniqueness theorem will follow also from the theorem in the next section.

4. Continuous dependence. For i=1, 2, consider the IVP's

$$(1.i) x_i'(t) = f_i(t, x_i(t), x_i(g_i(t, x_i(t))), x_i'(h_i(t))),$$

- (2.ia) $x_i(0) = x_{i0}$,
- (2.ib) $x_i'(0) = z_{i0}$,

under hypotheses analogous to (i)-(v):

(H1) For $i = 1, 2, f_i(t, x, y, z)$ is continuous in some domain $D \subset \mathbb{R}^4$ containing both of the sets

$$P_i = \{(t, x, y, z) : |t| \le a, |x - x_{i0}| \le b, |y - x_{i0}| \le b, |z| \le M\},$$

where x_{i0} are constants, a, b, and $M > |z_{i0}|$ are constants with $\sup_{(t,x,y,z)\in D} |f_i(t,x,y,z)| < M$, and z_{i0} is a real root of the equation $z = f_i(t,x_{i0},x_{i0},z)$.

- (H2) For $i = 1, 2, g_i(t, x)$ is continuous in the projection of D in the (t, x) plane, and $h_i(t)$ is continuous on [-a, a], with $|g_i(t, x)| \le |t|$; $|h_i(t)| \le |t|$.
- (H3) The functions f_1 and g_1 satisfy the conditions satisfied by f and g respectively in §3.

THEOREM 3. Let (H1)-(H3) be satisfied, let $\alpha = \min(a, b/M)$ and suppose that for $i=1, 2, x_i(t)$ is a continuously differentiable function which satisfies (1.i)-(2.ia)-(2.ib), with

$$|x_{10}-x_{20}|=\epsilon_0<\alpha M,$$

and there exist nonnegative constants ϵ_f , ϵ_a , ϵ_b such that

$$|f_1(t, x, y, z) - f_2(t, x, y, z)| \leq \epsilon_f,$$

$$|g_1(t, x) - g_2(t, x)| \leq \epsilon_g,$$

$$|h_1(t) - h_2(t)| \leq \epsilon_h$$

in their respective domains. Then if ϵ_h is sufficiently small, for all $t \in [-\alpha, \alpha]$,

$$(3) \quad |x_1(t) - x_2(t)| \leq \epsilon_0 + C_{\epsilon,x_1} \left[\exp\left(\frac{(2 + ML_0)L|t|}{1 - L_{\epsilon}}\right) - 1 \right]$$

where

$$C_{\epsilon,x_1} = \frac{\epsilon_f + (2 + ML_g)\epsilon_0 + ML\epsilon_g + L_z\epsilon_{x_1,h}}{L(2 + ML_g)}$$

and for each fixed solution $x_1(t)$, the quantity $\epsilon_{x_1,h}$ tends to zero as $\epsilon_h \rightarrow 0$.

PROOF. Let $\eta > 0$. By continuity of $x_1'(t)$, there exists $\delta > 0$ such that if $t, \tau \in [0, \alpha]$ and $|t-\tau| < \delta$, then $|x_1'(t) - x_1'(t)| < \eta$. We suppose that $\epsilon_b < \delta$. Set $z_i(t) = x_i'(t)$, i = 1, 2. The functions z_i satisfy the equations

(4.i)
$$z_{i}(t) = f_{i}\left(t, x_{i0} + \int_{0}^{t} z_{i}(s)ds, x_{i0} + \int_{0}^{g_{i}} \left(t, x_{i0} + \int_{0}^{t} z_{i}(\sigma)d\sigma\right) z_{i}(s)ds, z_{i}(h_{i}(t))\right).$$

Using the Lipschitz continuity of f_1 , and the definitions of the quantities ϵ_0 , ϵ_f , ϵ_g and η , we obtain from (4.1) and (4.2) the estimate

$$\begin{aligned} |z_{1}(t) - z_{2}(t)| &\leq \epsilon_{f} + L\left\{\epsilon_{0} + \left| \int_{0}^{t} |z_{1}(s) - z_{2}(s)| ds \right| \right\} \\ &+ L\left\{\epsilon_{0} + \left| \int_{0}^{g_{2}\left(t, x_{20} + \int_{0}^{t} z_{2}(\sigma)d\sigma\right)} |z_{1}(s) - z_{2}(s)| ds \right| \right. \\ &+ \left| \int_{g_{2}\left(t, x_{20} + \int_{0}^{t} z_{2}(\sigma)d\sigma\right)}^{g_{1}\left(t, x_{20} + \int_{0}^{t} z_{2}(\sigma)d\sigma\right)} |z_{1}(s)| ds \right| \\ &+ \left| \int_{g_{1}\left(t, x_{20} + \int_{0}^{t} z_{2}(\sigma)d\sigma\right)}^{g_{1}\left(t, x_{20} + \int_{0}^{t} z_{2}(\sigma)d\sigma\right)} |z_{1}(s)| ds \right| \\ &+ L_{z} |z_{1}(h_{2}(t)) - z_{2}(h_{2}(t))| + L_{z}\eta. \end{aligned}$$

The a priori bound on $z_1(t)$ and the Lipschitz condition on $g_1(t, x)$, together with the fact that $|g_2(t, x)| \le |t|$, yield

$$|z_{1}(t) - z_{2}(t)| \leq \epsilon_{f} + (2 + ML_{0})L\epsilon_{0} + ML\epsilon_{g} + L_{z}\eta$$

$$+ (1 + ML_{0})L \left| \int_{0}^{t} |z_{1}(s) - z_{2}(s)| ds \right|$$

$$+ L \max \left\{ \left| \int_{0}^{t} |z_{1}(s) - z_{2}(s)| ds \right|, \left| \int_{-t}^{0} |z_{1}(s) - z_{2}(s)| ds \right| \right\}$$

$$+ L_{z} |z_{1}(h_{2}(t)) - z_{2}(h_{2}(t))|.$$

Let
$$K = \epsilon_f + (2 + ML_g)L\epsilon_0 + ML\epsilon_g + L_z\eta$$
, and
$$R(t) = \max_{|s| \le |t|} |z_1(s) - z_2(s)|.$$

Then, on $[0, \alpha]$ we have

$$R(t) \leq K + (2 + ML_g)L \int_0^t R(s)ds + L_z R(h_2(t)),$$

and since R is an even function, is nondecreasing, and $|h_2(t)| \leq |t|$,

$$R(t) \le \frac{K}{1 - L_s} + \frac{(2 + ML_g)L}{1 - L_s} \int_0^t R(s)ds.$$

By the Gronwall inequality

(5)
$$R(t) \le \frac{K}{1 - L_z} \exp\left(\frac{(2 + ML_g)Lt}{1 - L_z}\right)$$

and integration leads to

$$|x_1(t) - x_2(t)| \le \epsilon_0 + \int_0^t R(s)ds$$

$$\le \epsilon_0 + \frac{K}{(2 + ML_0)L} \left[\exp\left(\frac{(2 + ML_0)Lt}{1 - L_z}\right) - 1 \right],$$

and setting $C_{\epsilon,x_1} = K/(2+ML_{\mathfrak{g}})L$, we obtain (3) on $[0,\alpha]$. Since R is an even function, the estimate (5) holds on $[-\alpha,0]$ if t is replaced by -t. Thus analogously the estimate (3) holds also on $[-\alpha,0]$ and the proof is complete.

- 5. Nonlinear functional equations. As a corollary to our existence and uniqueness results, we note that if f(t, x, y, z) is independent of x and y, and h(t, x) is independent of x, the problem (1) (2b) has the form of the functional equation
 - (5) z(t) = f(t, z(h(t))),
 - (6) $z(0) = z_0$,

where z_0 is a root of z = f(0, z). Theorems 1 and 2 then yield at once:

THEOREM 4. Let f(t,z) be continuous in some region in R^2 containing $P_1 = \{t: |t| \le \alpha, |z| \le M\}$, where α and M are positive constants such that $\sup_{(t,z)\in P_1} |f(t,z)| < M$, and $M>|z_0|$ where z_0 is a real root of z=f(0,z). Let f satisfy the Lipschitz condition $|f(t,z_1)-f(t,z_2)| \le L_z|z_1-z_2|$ for all (t,z_1) , $(t,z_2)\in P_1$, with $L_z<1$. Let h(t) be continuous for $|t| \le \alpha$, h(0)=0, and $|h(t_1)-h(t_2)| \le |t_1-t_2|$ for $t_1,t_2\in [-\alpha,\alpha]$.

The the problem (5)-(6) has at least one continuous solution on $[-\alpha, \alpha]$, and this is the unique continuous solution on this interval if α is sufficiently small.

REFERENCES

- 1. R. D. Driver, A functional-differential system of neutral type arising in a two-body problem of classical electrodynamics, Internat. Sympos. on Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, pp. 474–484. MR 26 #4008.
- 2. ——, Existence and continuous dependence of solutions of a neutral functional-differential equation, Arch. Rational Mech. Anal. 19 (1965), 149-166. MR 31 #3654.
- 3. J. K. Hale and M. A. Cruz, Existence, uniqueness, and continuous dependence for hereditary systems, Ann. Mat. Pura Appl. 85 (1970), 63-81.

University of Missouri-Rolla, Rolla, Missouri 65401