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EXISTENCE AND CONTINUOUS DEPENDENCE FOR A
CLASS OF NONLINEAR NEUTRAL-
DIFFERENTIAL EQUATIONS

L. J. GRIMM!

ABsTRACT. This paper presents existence, uniqueness, and
continuous dependence theorems for solutions of initial-value
problems for neutral-differential equations of the form

o)) = [, x(t), x(g(t, %), &' (h(t, ),  x(0) = =,

where f, g, and k are continuous functions with g(0, xo) =k(0, x0)
=0. The existence of a continuous solution of the functional equa-
tion z(¢) =f(¢, 2(k(t))) is proved as a corollary.

1. Introduction. In this paper we consider the initial-value problem
(IVP) for the functional-differential equation of neutral type

M #'(1) = f, x(2), x(g(t, 2(1))), &' (h(1, x(1)))),

with the initial condition

(2a) x(0) =x.

Here f(¢, x, v, 2), g(t, x) and h(¢, x) are continuous functions with
2(0, xo) =k(0, x0) =0. We assume further that the algebraic equation
2=£(0, x0, %0, z) has a real root 2, and we require that

(2b) %'(0) =z,.

Existence and uniqueness theorems for IVP’s for equation (1)
have been proved by R. D. Driver [1] for the case where k(¢, x) <t,
and recently by J. K. Hale and M. A. Cruz [3] provided that f is
linear in the argument x’(k(¢, x)). We prove an existence theorem
without these hypotheses, and a uniqueness theorem in case % is inde-
pendent of x. Hale and Cruz [3] have also obtained continuity theo-
rems for the quasilinear case mentioned above, while Driver [2] has
proved a continuity theorem for IVP’s for equations of the form (1)
in case g and % are both independent of x, and k() <t for all £. We
obtain here a continuous dependence result for the IVP (1)-(2a)—(2b)
provided that the function 4 is independent of x. Finally we obtain a
result on existence of continuous solutions of certain nonlinear func-
tional equations as a corollary of our existence and uniqueness theo-
rems.
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2. Existence. Let >0, and let J=[—a, a]. We shall make the
following assumptions concerning the IVP (1)-(2a)-(2b):
(i) f@, =, », 2) is continuous in some region in R* containing

P={(t,x,y,z):|t| £ q Ix—xol §B,|y—xo| =8, lz| éM}

where a, B and M>|z| are positive constants. We assume that
a=B/M and that sup,».y,,epr lf(t, x,y, z)] <M.

(ii) g(t, x) and k(¢, x) are continuous in the projection R of P in
the (¢, x) space; g and & both map R into J, with g(0, x) = %(0, xo) =0,
and k(¢, x) satisfies the Lipschitz conditions

lh(tl, x1) — h(ts, x2) | < kllll— o] + ko| 21 — 2|

for all (4, x1), (t2, x2) ER, where k; and k. are nonnegative constants
With k1+k2M§ 1.
(iii) The function f(¢, x, y, 2) satisfies the Lipschitz condition

If(h %, 3, 21) — f4, %, 3, z2)l = le 21 — 21|

for all (¢, x, y, 21), (¢, x, ¥, 22) EP, where L,<1.
We shall prove the following theorem:

THEOREM 1. Under the hypotheses (i)—(iii), the IVP (1)—(2a)—(2b)
has at least one solution which is continuously differentiable on J.

Proor. Let X be the Banach space of continuous functions on J
with uniform norm. Let

S = {3E€ X:300) = 2, ||5]| = M}.
Define the mapping T': S—.S as follows: for 2&.5, let
Ta(t) = f(t, I(3, 9), I(z, g(¢, I(3, 1)), 2(h(t, 1(3, 1)),

where
]
I(z, ) =x+ f z(s)ds.
0

It is easy to verify that T is a continuous map of S into S. By con-
tinuity of f, if 2&.S5 and t&J, for each >0, there exists d(e) >0 such
that if #; and £E€J, and | —t| <8(e), then

| f(ts, (2, t2), (2, g(ts, 1(3, 1)), 2(h(t, I (3, £))))

- f(tz, I(zi fz), 1(27 g(t2> I(z) 12)))) Z(h(t, I(zr t)))) l <e
Let
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Se={z€S:|2t) — 2(ts) | S e/(1 - Ly)
forall ty, t, € J,| t: — 12| < 8(e)}.
If zES,, and if 4, L, EJ with |t1—t2| =<d(e), then
|Ta(ty) — Ta(ts)| < e+ el/(1 — L) = ¢/(1 = L,).

Thus TS.CS.. We note that S, is closed, bounded and convex. Let
So=DNai >0 Se. S is nonempty, closed, bounded and convex, and
by the Ascoli-Arzela theorem, S, is compact. Since T.S.C S, for all
€>0, T'SoCSo. Hence by the Schauder theorem, T has at least one

fixed point z(#). Integration yields the required solution of (1)—(2a)—
(2b).

3. Uniqueness. In case k(¢, x) is independent of x, we obtain the
following uniqueness result:

THEOREM 2. In addition to the hypotheses of Theorem 1, suppose that:
(iv) h(t, x)=h(t) is independent of x.
(v) fand g satisfy the Lipschitz conditions
|f(t7 X1, Y1, 21) - f(ty X2, Y2, 22) l
SL{|m—m| + [y1— 9|} + L]z — 2]
with L,<1;
| g(t) xl) - g(ty x2)| é LUI X — le )

uniformly in their domains.
Then there exists vo, 0< Yo=c, such that there is a unique continu-
ously differentiable solution of the IVP (2)-(3a)—(3b) on [ =0, Yo]-

Proor. Under the hypotheses of the theorem, if 2E€S, 0<y Za,
and t€[~v, 7],

| T2:(t) — Taa(t) | < L{| (21, §) — I(2s, 8) |
+ 1z, g, I(z, 1)) — I(z2, g(2, (2, )] }
+ L.| 21(h()) — 220k (D)) |
< Lylls — 2| + Lvf|z — 2
+ LL,M‘y”zl — zo|| + Li||z1 — 2|
= [yL(2 + ML) + L]||z1 — 2.

Hence if v is sufficiently small, the mapping T is a contraction, and
the statement of the theorem follows by integration.
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REMARK. A uniqueness theorem will follow also from the theorem
in the next section.

4. Continuous dependence. For 1=1, 2, consider the IVP’s

(1.3) x4(2) =Fi(t, %:(2), x:(gs(t, %:(2))), %1 (R:(2))),

(21a) x.(O) =Xi0,

(2.ib) x;(0) =2,
under hypotheses analogous to (i)—(v):

(H1) Fori=1, 2, f:(t, x, ¥, 2) is continuous in some domain D CR*
containing both of the sets

Pi={(t,x,5,9:|t] Se|a—u0| £b |y— 20| =5, |2 <M},

where x;0 are constants, @, b, and M > | z;o| are constants with
SUP(t,z,9,2)ED | fi(t, %, 9, z)| <M, and 2 is a real root of the equation
z2=f;(t, %i0, Xi0, 2).

(H2) Fori=1, 2, gi(¢, x) is continuous in the projection of D in the
(¢, x) plane, and k;(t) is continuous on [—a, a], with |g,—(t, x)| =t
ZOIELE

(H3) The functions f; and g satisfy the conditions satisfied by f and
g respectively in §3.

THEOREM 3. Let (H1) —(H3) be satisfied, let a=min (a, b/ M) and
suppose that for =1, 2, x:(t) is a continuously differentiable function
which satisfies (1.1) — (2.ia) — (2.ib), with

| X190 — x20| =€ < aM,

and there exist nonnegative constants €, €,, €, such that

ifl(ty X, Y, Z) _fz(tr X, Y, Z) | é €fy

| a1ty %) — gat, %) | < €

| () — k()| S en
in their respective domains. Then if e is sufficiently small, for all

tE [_ay a],

A3) | 21(t) — 22(0) | < €0+ Cey [exp(

where

@ +1M_L2L|tl)_1]

€f + (2 + ML,)Go + MLG, ‘I" L,ézl';,
L2+ ML)

and for each fixed solution x,(t), the quantity €, » tends to zero as ex—0.

Ce x =
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Proor. Let n>0. By continuity of x{(¢), there exists § >0 such that

if ¢, 7€ [0, «] and |t—r| <39, then |x{(t) —x{(t)] <7n. We suppose that
&, <d.Set z;(t) =x;(¢), 1=1, 2. The functions z; satisfy the equations

z() = fi (t, %io + j;‘z.-(s)ds,

Y
0

(4.)
5()ds, z.~<h.~<z>>).

Using the Lipschitz continuity of f;, and the definitions of the
quantities €y, €, €, and 7, we obtain from (4.1) and (4.2) the estimate

|

|21(S) - Zz(s)l ds

I z1(t) — 2(9) | Sg+ L {éo +

f‘ [ 21(s) — 2a(s) | ds
0

s | e L)
0

gl(t,xzo‘l' fo ‘Zz(o')dc)
gz(l,xzo'l' fo ‘zz(ﬂ)do‘)

gl(t,xm'i‘ fo‘Zl(lf)da‘)
g:(t,xzo+ fo ‘zg(d)dd)
+ L| 21(ha(t) — 22(ha®)) | + Lan.

The a prior: bound on 2,(¢) and the Lipschitz condition on gi(¢, x),
together with the fact that l %) < |¢], yield

| 2:()) — 2(t) | S ¢+ 2+ ML)Leo+ MLey + Ly

L‘I 21(s) — 22(s) | ds

+ | 21(s) | ds

+ [ 21(s) | ds

+ Q0+ ML)L

ol 21(s) — 22(s) | ds

}

+Lmax{ ,

f‘| 21(s) — Zz(S)l ds

+ L. | z21(ho(9) — za(ha®)) | -
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LetK=¢+(Q2+ML,)Leo+ MLe,+ L.y, and
R(t) = max | 21(s) — 25(5) | .
i

lsl=1t

Then, on [0, ] we have
RO =K+ 2+ ML,,)Lf R(s)ds + L.R(h(2)),
0

and since R is an even function, is nondecreasing, and [ hz(t)l =< I t| s

K 24+ ML)L (!
R £ +( + ML) f R(s)ds.
1 - Lz 1 - Lz 0

By the Gronwall inequality

K 2 + ML,)L
(5) R() = =L exp( )

1-17,

and integration leads to

[21(t) — 2:(0) | < e+ f tR(s)a’s
0

B [ ((2 1 ML,)Lt) 1]
R ES AV A T 2 ’

and setting C,,,=K/(2+ML,)L, we obtain (3) on [0, a]. Since R is
an even function, the estimate (5) holds on [ —«, 0] if ¢ is replaced by
—t. Thus analogously the estimate (3) holds also on [ —e, 0] and the
proof is complete.

5. Nonlinear functional equations. As a corollary to our existence
and uniqueness results, we note that if f(¢, x, y, 2) is independent of x
and y, and k(¢ x) is independent of x, the problem (1) —(2b) has the
form of the functional equation

(5) 2(t) =£(t, 2(R (1)),

(6) 2(0) =20,
where 2o is a root of z=F(0, z). Theorems 1 and 2 then yield at once:

THEOREM 4. Let f(t, 2) be continuous in some region in R? containing
P = {t: I t| <a, |z| <M }, where o and M are positive constants such
that sup(:,yep, |f(t, z)l <M, and M> |zo! where 2o is a real root of
g=f(0, 2). Let f satisfy the Lipschitz condition |f(t, 1) —f(t, 25)|
§L,| Z —22| for all (8, 21), (¢, 22) EP1, with L, <1. Let h(t) be continuous
for |t| Sa, B(0) =0, and | h(t) —h(t:)| <|th—t| for ti, LE[—a, a].
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The the problem (5)—(6) has at least ome comtinuous solution on
[—a, al, and this is the unique continuous solution on this interval if o
1s sufficiently small.
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