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RIGHT LCM DOMAINS1

RAYMOND A. BEAUREGARD

Abstract. A right LCM domain is a not necessarily commuta-

tive integral domain with unity in which the intersection of any two

principal right ideals is again principal. The principal result deals

with right LCM domains that satisfy an additional mild hy-

pothesis; for such rings (which include right HCF domains and

weak Bezout domains) it is shown that each prime factorization of

an element is unique up to order of factors and projective factors.

Projectivity is an equivalence relation that reduces to the relation

of "being associates" in commutative rings and reduces to simi-

larity in weak Bezout domains.

All rings considered are (not necessarily commutative) integral

domains with unity. If R is such a ring, R* denotes the monoid of

nonzero elements of R. Among the interesting properties of integral

domains are the conditions that guarantee uniqueness of the prime

decompositions of a given element. (A prime is understood to be a

nonzero nonunit with no proper divisors.) In commutative rings the

uniqueness referred to is uniqueness up to order of factors and

associate factors. It is common knowledge that, in this case, unique-

ness is guaranteed by the existence of LCM's for each pair of nonzero

elements. This is, of course, equivalent to existence of GCD's for

such elements, although in the noncommutative case this is not true.

Our main concern is the extension of such results to the noncommuta-

tive case.

In going over to the noncommutative case uniqueness must be

weakened. It is well known [2] that the prime factorization of a

given element is unique up to order of factors and similarity in a weak

Bezout domain, that is, in a ring in which the sum and intersection

of any two principal right (or left) ideals is again principal whenever

the intersection is nonzero. Now a weak Bezout domain can be

characterized as a ring in which right (and left) LCM's exist for each

pair of nonzero elements that has a nonzero common right (left)

multiple, and left (and right) GCD's exist for such elements and are
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linear combinations of them. In attempting to weaken this condition

we are led to a consideration of rings in which the intersection of any

two principal right ideals is principal (right LCM domains). In this

paper we study the properties of such rings; among these is the

unique factorization property given in Theorem 2. We begin with

integral domains in general.

For two elements a, bER* the greatest common left divisor

(GCLD), denoted by (a, b)¡, and the least common right multiple

(LCRM), denoted by [a, b]r, are defined in the obvious way. Thus,

d = (a, b)i iff dR is the smallest principal right ideal of R containing

both aR and bR, and m = [a, b]r iff mR is the largest nonzero principal

right ideal of R contained in ai? and bR. Ud = (a, b) ¡ then dR—aR+bR

provided that aR+bR is already principal; in general we write

dR=aR\/bR. On the other hand, we always have m= [a, b]r iff mR

= aRC\bR. Similar definitions and remarks are analogous for the

GCRD and LCLM of two elements of R*.

Lemma 1. Let ab' =ba'ER*- If [a, b]r exists then so does (a', b')r

and

(1) ab' = ba' = [a, b]r(a', b')r.

Similarly if [a', b']¡ exists then so does (a, b)i and

(V) ab' = ba' = (a, b)i[a', b']i.

Proof. Let m= [a, b\r so that mR = aRf~^bR and m has the form

m—abi — bai. Then ab' = abid for some d and, therefore, b' = bid,

a'=aid. Thus d is a common right divisor of a' and V. Let c be any

other such divisor, say, b' = b2c, a'=a2c. We wish to show c is a right

divisor of d. Now ab2 = ba2 which yields ab2=abir for some r. Hence

b2 = bir, bid(=b')—birc which yields d = rc as desired. Therefore d

= (a', b')T and (1) holds by the choice of d. The proof of (1') is similar.

Before proceeding further we shall consider an example to illus-

trate the lack of left-right symmetry of some of the concepts con-

sidered thus far. Let S be a local PRI domain with pS the ideal of

nonunits of 5 such that C\pnS = aS9é0 (see [l, p. 252]). Since aS is a

two sided ideal we may define a monomorphism a on 5 by sa=as"

(sES). Note that a-a". Also t=p' is a unit because a=pai for some

aiEaS, say ai = au; substituting the last two equations into pa=at

we obtain pa = paut from which it follows that ut = 1 and t is a unit.

Let R = S[x, a] = { 2 xlb,\ biES] be the ring of skew polynomials

in which multiplication is determined by the formula bx=xb°. Since

px = xt it follows that x = pxt~l — p2xt~2 = • ■ •  and xE^P"R- There-
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fore xR+aREftp"R- On the other hand, if gE^pnR then writing

g = bo-\-xgo where bo is the constant term of g we have ¿>o=g—xgo

EftpnS = aS and so b0 has the form b0 = ar0. Thus g=ar0+xgo.

We conclude xRA-aR = [\pnR. Next we observe that xR-\-aR is not a

principal right ideal. For if dR=xRA-aR then dES; in fact, dES\aS

since dEaS would yield xREaR, say x = af where/ has the form

f = xr (rES), and so x=xar and upon cancelling x we would obtain

the contradiction that a is a unit; thus d must have the form d

— pku where uES\pS and this contradicts the fact that xR-\-aR

= V\pnR. We conclude that xRA-aR is not a principal right ideal.

Finally we check that xRC\aR=axR. For if xf = agExRC\aR then

evidently deg(g)>0 so that g=xg0. Therefore xf = axgoEo,xR and

xR(~\aREctxR. The reverse inclusion is obvious since ax =xa.

In the present example we have [a, x]r = ax =xa but from what we

have shown (a, x)i does not exist. According to Lemma 1, [a, x]t also

fails to exist and (a, x)r does exist.

We shall call R a right LCM domain iff ii is a ring in which the inter-

section of any two principal right ideals is principal. Left LCM do-

mains are similarly defined, and if R is both a right and a left LCM

domain we call R an LCM domain. Obviously every weak Bezout do-

main is an LCM domain. The most immediate example of an LCM

domain that is not a weak Bezout domain is the ring of polynomials

in more than one commuting indeterminate over a field.

If aER we denote by [aR, R] ([Ra, R]) the poset2 of principal

right (left) ideals of R containing aR (Ra). By Lemma 1 we see that

the posets [aR, R] and [Ra, R] (aER*) are lattices under inclusion

if R is an LCM domain. In contrast, a weak Bezout domain can be

characterized as a ring in which aER* implies the poset [ai?, R] (or

[Ra, R]) is a sublattice of the lattice of all right (left) ideals of R.

A right (left) HCF ring has been defined in [2] to be a ring in

which the poset of principal right (left) ideals of R is a modular

lattice under inclusion. In order to compare these with right LCM

domains we generalize the definition and call R a right weak HCF

domain iff aER* implies [aR, R] is a modular lattice under inclusion.

Left weak HCF domains and (two sided) weak HCF domains are de-

fined in the obvious way. Evidently any weak Bezout domain is a

weak HCF domain. To relate LCM rings to HCF rings we use the

following lemma.

Lemma 2. In an LCM domain R the following two conditions are

equivalent:

8 Partially ordered set.
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(2) [x, yz]r = [x, y ]T, (x, yz) ¡ = (x, y) ¡ implies z is a unit?

(2') [y',zx']i- [y',x']i, (y',zx')r = (y',x')Timplieszisaunit.

Proof, líxy' =yzx,9é0 then using (1) and (1') we have

xy' = (x,y)i[zx',y']i = [x,y]r(zx',y')r = (x, yz),[x',y']i = [x,yz]r(x',y')r

from which the equivalence of (2) and (2') follows.

Theorem 1. If R is a right (left) HCF domain then R is a right

(left) LCM domain satisfying (2) ((2')). Conversely, if R is an LCM

domain satisfying (2) ((2')) then R is a right (left) weak HCF domain.

Proof. If R is a right HCF domain and if m= [x, yz]r then the

modular law in the lattice [mR, R] shows that (2) holds. To prove

that R is a right LCM domain let a, bER and consider aRC\bR. We

might as well assume aRC\bR9¿0. Then if mR is the inf of ai? and bR

in the lattice of principal right ideals of i? it follows that m= [a, b]T

and mR=aRC\bR.

Now let i? be an LCM domain satisfying (2). To prove the modular

law in [aR, R] (aER*) let xR, yR, zRDaR with zRZ)xR. If uR

= (xR\/yR)r\zR and vR=xR\J(yRr\zR) then we must show uR

= vR. Now uREvR and hence u = vt for some /. Also,

yR V uR = yR V vR       ( = yRV xR),

yR C\ uR = yR C\ vR        ( = yRC\zR).

Therefore (y, vt)¡ = (y, v)t and [y, vt]r= [y, v]r. By (2) this implies t

is a unit and hence uR=vR as desired.

Using Theorem 1 with Lemma 2 we deduce that in an LCM do-

main the concept of a right (weak) HCF domain is left-right sym-

metric. We state this result as follows.

Corollary. // i? is an LCM domain then R is a right (weak) HCF

domain iff R is a left (weak) HCF domain.

We recall that two elements a, a'ER are called similar, a~a',

iff R/aR=R/a'R as i?-modules. It is shown in [2] that this definition

is left-right symmetric. Also, a~a' iff there exists bER such that

aR+bR=R, aRC\bR = ba'R (see [2, p. 316] or [3, p. 34]). We gen-
eralize this relation and define a tr a' iff there exists bER such that

(a, o)¡ = l and [a, b]r = ba'. In this case ba' = ab' for some b' and b tr b'.

* Note that in a commutative LCM domain (2) always holds; by factoring out

(x, yz) we may assume (x, yz) = (x, y) =1 in which case [x, yz] =xyz and [x, y] = xy.

Also, in a weak Bezout domain (2) holds; it is an immediate consequence of the modu-

lar law for right ideals.
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Using Lemma 1 we deduce that in an LCM domain this definition is

also left-right symmetric; that is, a tr a' iff there exists b'ER such

that (a', &')r = l and [a', b']i = ab'. If a and a' are associates then

a tr a' by taking b and b' to be units in the definition. If R is commuta-

tive then a tr a' implies a and a' are associates ; this follows because in

commutative rings if (a, b)=i then [a, b]=ab. Evidently a~a' im-

plies a tr a', and in a weak Bezout domain the converse holds.

If R is an LCM domain and if a tr a' then there exists bER such

that the lattice intervals [ba'R, bR] and [aR, R] are transposes

(equivalently there exists b'ER such that [Rab', Rb'] and [Ra', R]

are transposes). If, in addition, R satisfies (2) then transposed inter-

vals are isomorphic and therefore [a'R, R] and [aR, R] are iso-

morphic. In particular, a is prime iff a' is prime.

It can be shown (although it is not needed for our purposes) that

tr is a transitive relation. If either a tr a' or a' tr a then we call a and

a' transposes. If there is a sequence a=ai, a2, • • • , an=a' in R such

that ai and a,+i are transposes for each i then a and a' are called

projective and we write a pr a'. Projectivity is an equivalence relation

in R, and is left-right symmetric if R is an LCM domain.4 Projective

elements are similar in a weak Bezout domain and are associates in

a commutative ring.

If zER then each prime factorization of z corresponds to a maxi-

mal chain in [zR, R] and vice versa. It is tempting to try to prove a

unique factorization theorem for right HCF domains by employing

the Schreier Refinement Theorem for [zR, R]. While this method

works well for weak Bezout domains, getting a suitable interpreta-

tion of the refinement theorem in a right HCF ring is not feasible. A

direct approach for the (larger) class of right LCM domains satisfy-

ing (2) is given in the following.

Theorem 2. Let R be a right LCM domain satisfying (2). If an

element has two prime factorizations, say,

(3) z = pipi • • • pn = qiq2 • • • qm

then n = m and there is a permutation a of {\, 2, • • • , n} such that

Pi Pr 2<r(,> Thus the prime factorization of an element is unique up to

order of factors and projectivity.

Proof. Let h(z) denote the least number of prime factors of z. If

8(z) = 0 there is nothing to prove and if o(z) = 1 then z is prime and the

4 Strictly speaking we should speak of right transposition and right projectivity

if R is not an LCM domain.
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proof is trivial. Now assume that z has two prime factorizations as in

(3) where ô(z)=«>l. If piR=qiR then pi=qiu where u is a unit.

Cancelling these factors in (3) the theorem follows by induction. If

piR^qiR then (pi, qí)¡ exists and equals 1. Let piq'i=qip'i= [pu ?i]r-

Then pi pr p[ and qi pr q[ and therefore p{ and q[ are primes. Now

z=piq[r for some r; this yields pi ■ ■ ■ pn=q[r and q2 ■ • • qm = p[r.

Thus 5(q[r) <n and o(p[r) <n. By induction q[ pr ph and p[ pr qk for

some h, k. Consequently pi pr qk, qi pr £Ä, and the remaining primes

pi and <7j may be paired into projective pairs through a fixed prime

factorization of r.

Since projective elements are associates in commutative rings we

have the following familiar result.

Corollary 1. If R is a commutative LCM domain then the prime

factorization of an element is unique up to order of factors and associate

factors.

Because projectivity reduces to similarity in a weak Bezout domain

we have an independent proof of the following result of [2 ].

Corollary 2. If R is a weak Bezout domain then the prime factoriza-

tion of an element is unique up to order of factors and similarity.

Weak Bezout domains can be characterized in terms of LCM

domains using the following concept. If a, bER then a and b are

called left coprime iff (a, b)i = \. If, in addition, 1 =ar-\-bs for some r,

sER then a and b are called left comaximal. In the following theorem

the proof, being straightforward, is omitted.

Theorem 3. A ring is a weak Bezout domain iff R is an LCM do-

main in which each left (right) coprime pair of elements having a non-

zero common right (left) multiple is left (right) comaximal.

If R is a ring in which each left coprime pair of elements having a

nonzero common right multiple is left comaximal then a tr a' iff

a~a'. Therefore we also have the following corollary to Theorem 2.

Theorem 4. Let Rbea right LCM domain in which each left coprime

pair of elements having a nonzero common right multiple is left co-

maximal. Then the prime factorization of an element is unique up to

order of factors and similarity.

Note that, in the statement of Theorem 4, condition (2) need not

be stated explicitly ; it may be derived from the hypotheses.

If R is an LCM domain satisfying (2) then projective elements that
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have prime decompositions have the same prime factorizations in the

sense of Theorem 2. This result is a corollary of the following theorem.

Theorem 5. Let R be an LCM domain satisfying (2) and let a tr a'.

(i) Ifa= aia2 then there exist a[, a'2 such that a' = a[a2 ;

(ii) If a' =a[a'2 then there exist ai, a2 such that a = aia2;

in either case ai tr a[ and a2 tr a'2.

Proof. Let (a, o)¡ = l, [a, b]r=ab'=ba' and suppose a=aia2.

Then (oi, 6)i = l, [ai, b]r = aib" = ba[ for some a[, b". Thus ai tr a[.

Also [a, b]r= [ai, b]ra'2 for some a2 and, so a'=a'ia2 and b"a2=a2b'.

It follows by the modular law (guaranteed by (2) in Theorem 1) that

(a2, b")i = \. Now ai[a2, b"]r= [a, aib"]r which is equal to [a, b]r since

aib" = [ai, b]r. Therefore [a2, b"]T = a2b' and a2 tr a2. The second state-

ment of the theorem is proved in a similar way using (2') and the

modular law for principal left ideals.

By induction we may extend Theorem 5 in the following way.

Corollary. Let R be an LCM domain satisfying (2). If a pr a' and

if a=aia2 ■ ■ ■ a„ then there exist a[, a2, ■ ■ ■ , a'n such that a' = a[a2 • • ■

a'n with ai pr a't.

Using the last corollary with Theorem 2 we have the following.

Theorem 6. Let R be an LCM domain satisfying (2). If z pr z' and

if z=pip2 • ■ ■ pn, z' — qiq2 ■ ■ ■ qm where pi and q¡ are primes, then

n= m and there is a permutation a of {l,2, ■ ■ - ,n] such that pi pr qa^.

We note that Theorem 6 and the preceding corollary have analo-

gous statements for weak Bezout domains, where projectivity is re-

placed by similarity.
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