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ON RINGS WITH A HIGHER DERIVATION

SHIZUKA SATO

Abstract. Let iO© be two rings with the unit 1. Then we set

(R(0, R) = {xGR;xrG6 for some integer rêl}. At first, it is

shown that, under some assumptions, dOQO implies d(5l(0, R)

C0*l(0, R). Next, with the Lying-over Theorem on ¿-differential

ideals, we show: Let (if, M) and (0, m) be two quasi-local rings

and let d be a higher derivation of rank °o of the total quotient ring

of R such that dQQd. Suppose that R is integral over 0 and 0 is

dominated by R. Then d(m) CZm implies ¿(J1Í) CM.

0. Terminology. In this paper, we assume that all rings are commu-

tative and have the unit 1. Let TO© be two rings. Then we set:

01(0, R) = {x E R; xr E © for some integer r^l),

(R(0, R)* = {xE R; 3yG© such that yx E &(©, R)}.

Next, let Rw be the set of s-tuples (po, Pi, • • • , p.-i), PiER, with

operations, for x = (x0, xi, • • • , x„_i), y = (ya, yi, ■ • • , y*-i)ERw,

x + y = (xo + y0, Xi + yu ■ ■ ■ , x,_! 4- y,_i),

xy = (zo, Zi, • • • , z,_i),    where zk =   2 xQi-
i+3=k

This RM is a ring and R(x) is isomorphic to a formal power series ring

R [ [t ] ] with one indeterminate / over R.

1. On the existence theorems. Let d = (di)osis,-i he a higher der-

ivation of rank s of J? in the sense of P. Ribenboim (cf. [l]). Let 31 be

an ideal of a ring R. Then we shall call 21 a ¿-differential ideal if d%

C2Í, where d% C2I means d,2I C21 for all i.

Theorem 1. Let dbea higher derivation of rank s (finite or infinite) of

R. If 21 is a d-differential ideal of R, then there exists a maximal d-

differential ideal 'SSI of R such that 90021.

Proof. Let % be the set of ¿-differential ideals containing 21. Then

g is an inductive set (the order being given by the inclusion relation).

Hence Zorn's Lemma implies the existence of 5DÎ.

The following proposition is almost the same as Theorem 1 in [3].

But the difference between the two propositions is the definition of

higher derivations.
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Proposition 1. Let d=(dt) be a higher derivation of a Noetherian

ring 0 such that do is an isomorphism. Let %be a d-differential ideal of

0, and let ji, j2, ■ • ■ , h be associated prime ideals of 21. Then ¿i,

fo, • • ■ ,lr are d-differential ideals and Sí can be written as an irredun-

dant intersection of d-differential primary ideals.

Proof. We can prove this proposition by almost the same way as

Theorem 1 of [3], by considering exp(d), exp(d') instead of exp(tD),

exp(-tD) in [3] respectively, where d' is a higher derivation such

that dd' = l.

Corollary. With the same 0, ?f and d= (d¿) as Proposition 1, there

exists always a maximal d-differential ideal of 0 containing 21 and this is

a prime ideal.

Theorem 2. Let RD8 be two rings and let d= (1, di, d2, • • ■ ) be a

higher derivation of the total quotient ring of R such that d0C© and

dRER- Assume that R is integral over Q. If 3 is a d-differential prime

ideal of 0, then there exists a d-differential prime ideal 3' of R such that

3^0 = 3.

Proof. First, we shall prove that it is sufficient to consider the case

when 0 is an d-differential quasi-local ring and the maximal ideal of 0

is ¿-differential. By the hypothesis, d(08)C©a. On the other hand,

for sEO-l, di(l/s)=f(s)/sl+\ f(s)EQ. Since djCä, d(30a)C30j.
Hence J08 is a d-differential ideal and is the maximal ideal of 6¡. Let

5 = 0 — 3. Then P„ is integral over 0,. Now, suppose that there is a d-

differential prime ideal W of P, such that SJi'no» =J0S. Let 7r be the

natural mapping 7r(a)=a-l of 0 into 0S. Then 3' = w~1(W) is a d-

differential prime ideal. For let xEl' and ir(x)—yE3Ii'■ Then,

ir(di(x)) =di(x)-l =di((x)-l) =di(ir(x)) and 7r(x)G3W'. Hence di(w(x))

EW and di(x)Eh'. Trivially, j'noZ^. Conversely, let xEl'C\6 and

sJÎ = Ker(7r). Further let tt*:©—>0/9î be the canonical mapping. 0/ÏÏÎ

is isomorphic to a subring of 0S. Hence 7r*(3c) is considered as an ele-

ment of 0,. Therefore 7r*(x)G3i'A0i, and xGî©«- So, we have xEl

and jTA© =3. Thus we may assume that 0 is a quasi-local ring with a

higher derivation d and 3 is the maximal ideal of 0. It is well known

that in this case Pj^P. Thus, by the Corollary of Proposition 1,

there is a maximal d-differential ideal 9JÎ of P such that 3JlDRh and

9Dîno = 3.

2. On the invariability concerned with a higher derivation. Let

d=(di) be a higher derivation of rank s (finite or infinite) of P. Then

we introduce the ring homomorphism exp(d) of P(,+1> into P(,+1) as:
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for x = (xi) E Ru+1),       exp(d)(x) = (zt)    where zk =   22 di(x,).
i+j=k

If d0 is an isomorphism, then d has inverse higher derivation ô of rank

s of R, i.e. d8 = l, èd = l, where db = (di)(ôj) = (ek), ek=Yli+j=kdib3:

Further,

exp(dô) = exp(á) exp(ô) = 1,        exp(S<¿) = exp(ô) exp(á) = 1.

Hence exp(d) is an isomorphism [l ].

First, we extend a theorem first proved by A. Seidenberg [2,

Theorem 1 ] to the case of a higher derivation in a sense of P. Riben-

boim [l].

Proposition 2. Let ÍO0 be two rings and let 0' be the quasi-integral

closure (or the complete integral closure) of 0 in R. If dis a higher deriva-

tion of rank co of R such that dOEO, then dd'Eß'-

Proof. R is considered as a subring of i?(oo) by the mapping:

x—>(x, 0, 0, • • •)• Let a he an element of 0'. Then there is an element

ßGOsuch that ßa"G© for all p^O. Now, because exp(d)(0) C©(c0),

expid)ißa") = expid)(ß)[expid)ia)Y G ©(c0)    for all p ^ 0.

Hence d0(fi)doia)"Ee for all p^O. On the other hand, d0(ß)EO. Thus,

we see that d0(a)G©'. Assume that diia)E0' ior i^N — l. Then,

doiß)N expid)iß)[expid)ia) - idoia), • ■ • , ds-ii«), 0, 0, • • • )]>

= (o, • ■ • , 0, d0(ß)N+1dNiay, ■ ■ ) E ©(">.
\       PN-1 /

Therefore, by the induction assumption, do(|3)iV+1¿A'(o;)',G0 for all

p ̂  0, and dNia) EO'. This completes the proof.

Next, we shall study the relation of (R(0, R) and a higher deriva-

tion.

Theorem 3. Let k be afield of characteristic 0 and let d=(di) be a

higher derivation of rank » of a domain R (Dk) such that do is an iso-

morphism. ThendkEkimpliesd((S\.(k, R))E®-ik, R).

Proof, d can be extended to a higher derivation of K ( = the quo-

tient field of R). We shall denote by the same d this extended higher

derivation. Let 0^xG(R(^ R). Then there is an integer r^l such

that xTEk. By the assumption, d,(xr)Ek for all i. Hence, exp(d)(xr)

= [expid)ix)]rEk<-x). Thus d0(x)rGfc and d0ix)E®ik, R). Now,
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exp(d)(0 - (do(x), 0, 0, • ■ • )r

= (0, di(x), ■ ■ ■ )(rdo(x)'-\ ■ ■ ■ ) E k«°\

Hence rdo(x)r~1di(x)Ek. As d0 is an isomorphism and d0(x)re0,

do(x)~1EK. Further, do(x)'Ek and [do(x)TYlEk. Thus d0(x)~1

= do(x)r-1[da(x)r]-1ER. Therefore d0(x)-1E(ñ(k, R). Assume that

di(x)E&(k,R),iSN-l.Then,

exp(d)(x') - (d0(x), di(x), • • • , dN_i(x), 0, 0, • • • )'

= (0, • • • , 0, rdo(x)'-HN(x), ■ ■ ■ ) E <R(*, P)(eo).

Hence rdo(x)r~1dN(x)E<Si(k, R) and dN(x)ESi(k, R). This completes

the proof of our assertion d(6i(k, R))E<&(k, R).

Corollary. Under the assumptions of Theorem 3, (R(k, R) is afield.

Theorem 4. Let PD© be two domains and let d=(dî) be a higher

derivation of rank » of P. If d©C© and d((R(0, P))C0t(O, P), then

d((R(0,P)*)C(R(©,P)*.

Proof. Let x£(R(0, R)*. Then there is an element y£0 such that

yx£(R(0, P). By the hypothesis, d0(yx) =d0(y)d0(x)E(ñ(G, R) and

do(y)G©. Hence do(x)G(R(0, P)*. Now, d0(y)di(yx)=do(y)2di(x)

+do(y)d0(x)di(y), do(y)di(yx)eot(0, P) and do(y)do(x)di(y)G<R(0, P).

Therefore do(y)2di(x)G(ft(0, P) and di(x)G»t(0, P)*. Assume that

di(x)E(ñ(e, R)* and di(x)do(y)'-+1G(n(0, P) for alH^ A-l. We have

do(y)NdN(yx) = do(y)N+HN(x) + d0(y)N      £     di(y)dj(x).
i+j=N; i¿ 1

Hence d0(y)N+1dN(x)E(R(O, R), by the induction assumption and the

fact that dN(x)E&(e, R)*. Thus we have d((R(0, P)*)C&(©, P)*.

Corollary 1. Peí RZ)& be two rings and let d = (di) be a higher

derivation of rank s < *> of R. If d0C© and d((R(6, P))C&(0, R),

then for any x£(R(0, P)*, there exists a common element yEO such that

ydi(x) E Ot(0, P) for all i.

Corollary 2. Under the assumptions of Theorem 3, dkEk implies

d((R(k, R))E<R(k, R) andd((ñ(k, R)*)E&(k, R)*.

Proposition 3. Let PZ3© be two domains and let 0 contain the ra-

tional number field. Further, let d0C©, then, for any invertible element x

of (R(©, P), di(x) E (R(0, R)for all i.

Proof. x£fft(0, P) implies xrG© for some integer r^l. By the

assumption,
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exp(d)(*') = [exp(d)(x)]' = idoix), d,(x), • • ■ )r G 0(oo).

Hence d0(x)rG©, and do(x)G(R(0, R). As x is an invertible element,

there is a unique element x_1 G &(©, R) such that xx_1 = 1. From the

above discussion, ¿o(x)G<ft(0, -&)• Since ¿0 is a homomorphism, d0(x)

is an invertible element of (R(0, R). Now, the ith component of

(do(x),di(x), ■ ■ ■ ,dt-i(x), ■ ■ - Y is

d0(x)T~ldt(x) + A(d0(x), di(x), ■ ■ ■ , dt-i(x))

where A(á0(x), ¿i(x), • • • , d¡_i(x)) is a polynomial in the ¿0(x),

di(x), • • • , ¿t-i(x) with rational coefficients. Assume that, for i^N

-1, di(x)E<R(Q, R). Then, (í)á0(x)r-1¿í(x)G(R(©, R). Since 0 contains

rational numbers and do(x)_IGû"t(©, R), dt(x)E®-(0, R)- Hence for all

jèO, ¿y(x)G<ft(0, -R). This completes the proof.

Lemma 1. Assume that a quasi-local ring (0, m) is dominated by an-

other quasi-local ring (R, M). Then (R(0, R) is a quasi-local ring.

Proof. It is sufficient to prove that m = Mr\(ñ(6, R) is the unique

maximal ideal of (R(0, R). Assume that xGot(0, R) — m. Then, for

some integer r ^ 1, xrG0 and ï'f|». Hence x_rG© and x~xER- Thus

x^Gtflí,©, R).

Theorem 5. Let (R, M) and (0, m) be two quasi-local rings and let

d—(l,di,d2, ■ ■ ■ ) be a higher derivation of rank « of the total quotient

ring of R such that ddEO. Suppose that R is integral over 0 and 0 is

dominated by R. Then dm Em implies dMEM.

Proof. By virtue of Theorem 2, there exists a prime ideal M' of R

such that M'H\Q = m and dM'EM'. On the other hand, MDM'.

Hence Mr\eDM'f~\6 = m. By the assumption, MC\e = m. Hence

M = M'. Thus we have dM E M.

Corollary 1. Let (R, M) and (©, m) be two quasi-local rings and let

d = (1, di, di, ■ - ■ ) be a higher derivation of rank <x> of the total quotient

ring of R such that d&EG- Assume that © is dominated by R. Then

d(Mi\(R(e, R)) EMr\(R(e, R).

Proof. The first half is the consequence of Lemma 1, and the sec-

ond half is proved the same way as Theorem 5.

Corollary 2. Under the assumption of Corollary I, let 6 contain the

rational number field. Then d(<R(6, R)) C<H(0, R)-

0
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Proof. It follows obviously from Proposition 3 and Corollary 1.
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