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NONOSCILLATION PROPERTIES OF A NONLINEAR
DIFFERENTIAL EQUATION

MICHAEL E. HAMMETT

Abstract. Sufficient conditions are given for the approach to

zero of all nonoscillatory solutions of ipit)x')' +q(t)g(x) =/(/). The

conditions are related to an oscillation theorem of N. P. Bhatia

concerning the equation (pit)x')'-\-qit)gix) =0.

Call a function on [a, 4-oo) oscillatory if it has arbitrarily large

zeros. Otherwise call it nonoscillatory.

Consider the differential equation

(1) ipit)x')' + qiOgix) = 0

where pit), qit)EC[0, +«>), pit)>0, gix)ECi- <»,+ <*>)-

Bhatia [l] has proved the following result.

Theorem. All solutions of (1) defined on [0, 4- co) are oscillatory on

[0, 4- «o ) provided the following conditions hold:

/■+»    i
— dt = +cc,

o       Pit)

(3) f     q(t)dt=+«>,
J o

(4) xgix) > 0        if x 9± 0,

(5) g'ix) ^ 0.

Consider now the equation

(6) ipiDx')' + qit)gix) = f(t)

where fit) E C [0, 4- °° ) ■ Clearly the solutions of (6) are not necessarily

all oscillatory even if conditions (2)-(5) are satisfied and fit) is small

in a strong sense, such as /J"" \f(t)\dt< + <*>. The equation x"4~x

= 1er1 satisfies (2)-(5) and /0+" 2trx dt < + ».

However, the solution x(t)=e~l is nonoscillatory. Note that x(/)

= e~'—>0 as I—>+ ». This simple example illustrates the main result

of this paper.
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Theorem. In (6) let conditions (2), (4), and (5) be satisfied. Also

assume f(t)EC[0, +«),

(7) p(t) >k>0,

(8) q(t) > k > 0

and

(9) f      \f(t)\dt<+*.

If x(t) is a nonoscillatory solution of (6) on [0, + oo) then lim(_+0O x(t)

= 0.

Proof. Let x(/) be a nonoscillatory solution. Without loss of

generality assume x(t)¿¿0 on [0, +°°). Suppose x(/)>0. The case

x(t) <0 is handled similarly.

First it is shown that lim inf(^+00 x(£) — 0. Suppose not. Then

there is a number »î>0 such that x(t) it»on [0, + °°). By (4) and

(5) it follows that g(x(t)) ¡îg(m)>0 and thus x(t) is a nonoscillatory

solution of

(P(t)z'Y +
f(t) 1

g(x(t))

By Theorem 1 it follows that

Clearly (8) implies (3) and thus

f '    /(*)
hm sup I     -ds = + co.îmsup I     -
t^+»  Jo   g(x(g(x(s))

Since f(t)/g(x(t)) g | f(t) | /g(m) it follows that

lim   -—■ f   |/(í)|ái= +=o

contradicting (9). Hence

(10) lim inf x(t) = 0.

To complete the proof it needs to be shown that

(11) limsupx(i) = 0.
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Suppose not. Then

(12) lim sup x(/) > ¿i>0.

Let « denote any positive number. By (9), (10), and (12) choose

M^O such thatx'(M) = 0 and j~% \fit)\dt<e if Múkúhú + °°.
Suppose t ^ M and integrate (6) on [M, t] obtaining

pit)x'it) - piM)x'iM) + f qis)gixis))ds =  f fis)ds.

Since x'iM) =0 and qis)gixis))>0, then

(13) Pit)x'it)û  f'\fis)\ds<e.

Now integrate (6) on [t, b] where b^t^M is chosen such that x'(6)

= 0. Then follows similarly

(14) -Pit)x'it) < t.

Combining (13) and (14) it follows that

(15) | pit)x'it) [   < e for / ^ M

and thus

(16) lim   pit)x'it) = 0.

Now integrating (6) on [0, t] gives

f  q(s)g(x(s))ds = - p(t)x'(t) + Pi0)x'i0) +  f fis)ds
J 0 "  0

and since the terms on the right converge as /—>4~ °° it follows that

(17) f     qit)gixit))dt<+ co.
J o

The proof will be completed by contradicting (17).

By (10) and (12) there exists an increasing sequence of numbers

{¿n}, »^0, with the following properties:

(a) limn<+00/n=4-°o.

(18) (b) For each n, x(i„) >ki.

(c) For each w^l, there exists a number t'n

such that tn-i<t„<t„ and xit'„)<ki/2.
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Let an be the largest number less than tn such that x(an) = &i/2, and

let bn be the smallest number larger than tn such that x(bn) =^i/2 for

«^1. These must exist due to (18) and the continuity of x(t).

It now follows that there exists a number k2 > 0 such that

(19) bn- an> k2 for« ^ 1.

For consider the interval [a„, /»]. By the mean value theorem there

exists a number znE(an, t„) such that

,,   ,      x(/„) — x(an) h
x (z„) =->

tn — an 2(bn — an)

Now if lim inf„-+00 (bn— a„)=0, it follows that lim sup„^.+0O x'(z„)

= + oo. However from (7) and (16), lim¡_+x x'(t) = 0, a contradiction.

Because of the way an and bn were chosen, x(t) ^&i/2 on [an, bn],

and hence by (4) and (5),

(20) f0(0) ^ g(^i/2) > 0 on [a., i,].

From (8), (19), and (20) there follows

/* bn /* bn

I      q(t)g(x(t))dt >  j      k-g(ki/2)dt

= k-g(ki/2)-(bn - an) > k-g(ki/2)-k2.

Then

/» bm tn      ft bn

I     q(t)g(x(t))dl > 2 I     q(t)g(x(t))dt > k-g(ki/2)-k2-m- + co

as w^+ co so that f+~ q(t)g(x(t))dt= + <x> contradicting (17). Hence

lim¡,+00 x(t) =0. This completes the proof of the theorem.

It should be noted that the hypothesis of the main theorem is more

restrictive than that of Bhatia's theorem. In particular conditions (7)

and (8) where p(t) and q(t) are bounded away from zero are not

necessary conditions for a nonoscillatory solution of (6) to approach

zero. Consider the example (t~1x')'+t~1x = trl+3tri, iSgl. This

equation satisfies on [l, +oo) all conditions of the main theorem

except (7) and (8) but it does satisfy conditions (2) and (3) of Bhatia's

theorem. It has the nonoscillatory solution x(t) =trl which approaches

zero as t—*+ « from which it is easily shown that all nonoscillatory

solutions approach zero.
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It would be highly desirable to relax conditions (7) and (8) as much

as possible and, in fact, to drop (7) and replace (8) by (3) if possible.

In any event, it was shown in the proof of the main theorem that

lim inf(.+00 x(/) =0 for any positive solution x(¿), and this result uses

only the conditions of Bhatia's theorem along with condition (9).

It should also be noted that under the conditions of the main

theorem a nonoscillatory solution does not necessarily approach zero

monotonically. For example, the function x(í)=í~2(sin í-f-2) on the

interval [l, 4- oo ) is obviously positive, nonmonotonic, and approach-

ing zero. Clearly x(i) is a solution of an obvious equation x"4-x =/(i)

satisfying the conditions of the main theorem.
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