COUNTABLE PARACOMPACTNESS IN PRODUCT SPACES

PHILLIP ZENOR

ABSTRACT. The main purpose of this paper is to show that X^{ω} is normal if and only if (1) X^{n} is normal for each n, and (2) X^{ω} is countably paracompact. Furthermore, X^{ω} is perfectly normal if and only if X^{ω} is hereditarily countably paracompact. Also, the compact Hausdorff space X is metrizable if and only if X^{3} is hereditarily countably paracompact.

This note was prompted by [4], where Michael offers an example of a space X such that for each n, X^n is paracompact, but X^{ω} is not normal. Following the current notation, X^n denotes the topological product of n copies of X and X^{ω} denotes the product of countably many copies of X. For each integer n, \mathcal{O}_n denotes the projection of X^{ω} onto X^n . Throughout this paper, our spaces are assumed to be Hausdorff. The following lemma is due to Ishikawa [2]:

LEMMA A. The space X is countably paracompact if and only if for each monotonic decreasing sequence $\{H_n\}$ of closed sets with no common part there is a sequence $\{D_n\}$ of open sets such that $H_n \subset D_n$ for each n and such that $\bigcap_{n=1}^{\infty} \operatorname{cl} D_n = \emptyset$.

The next lemma was established in [5]:

LEMMA B. The space X is normal if for each pair (H, K) of mutually exclusive closed subsets of X there is a sequence $\{D_n\}$ of domains such that $H \subset \bigcap_{n=1}^{\infty} D_n \subset \bigcap_{n=1}^{\infty} \operatorname{cl} D_n \subset X - K$.

THEOREM A. X^{ω} is normal if and only if (1) X^n is normal for each n and (2) X^{ω} is countably paracompact.

PROOF. First, suppose that each X^n is normal and X^ω is countably paracompact. Let H and K denote mutually exclusive closed subsets of X^ω . The object is to obtain a sequence of domains, $\{D_n\}$, each element of which contains H such that $\{D_n\}$ satisfies our Lemma B. Note that if for some integer n, cl $\mathfrak{O}_n(H) \cap \operatorname{cl} \mathfrak{O}_n(K) = \emptyset$, then there are mutually exclusive open sets U and V in X^n such that U contains $\operatorname{cl} \mathfrak{O}_n(H)$ and V contains $\operatorname{cl} \mathfrak{O}_n(K)$. For each integer I we may let I be I and I we are through; and so, suppose that, for each I and I contains I contain

Received by the editors September 4, 1970.

AMS 1969 subject classifications. Primary 5420, 5425.

Key words and phrases. Product spaces, normality, countable paracompactness.

cl $\mathcal{O}_n(H) \cap \operatorname{cl} \mathcal{O}_n(K) \neq \emptyset$. For each integer n, let $L_n = \operatorname{cl} \mathcal{O}_n(H) \cap \operatorname{cl} \mathcal{O}_n(K)$. Then $\left\{ \mathcal{O}_n^{-1}(L_n) \right\}$ is a monotonic decreasing sequence of closed subsets of X^{ω} with no common part; and so, according to Lemma A, there is a sequence $\left\{ U_n \right\}$ of open subsets of X^{ω} such that (1) for each n, $\mathcal{O}_n^{-1}(L_n) \subset U_n$ and (2) $\bigcap_{i=1}^{\infty} \operatorname{cl} U_i = \emptyset$. For each n, let $V_n = \mathcal{O}_n(U_n)$. Then $\bigcap_{i=1}^{\infty} \operatorname{cl} \mathcal{O}_n^{-1}(V_n) = \emptyset$ and for each n, V_n contains L_n . Now, for each integer n, $\left[\operatorname{cl} \mathcal{O}_n(H) - V_n\right] \cap \left[\operatorname{cl} \mathcal{O}_n(K) - V_n\right] = \emptyset$; and so, there is an open set W_n in X^n such that $\operatorname{cl} \mathcal{O}_n(H) - V_n \subset W_n \subset \operatorname{cl} W_n \subset \operatorname{cl} \mathcal{O}_n(K) - V_n$. For each integer n, let $D_n = \mathcal{O}_n^{-1}(W_n \cup V_n)$. Clearly, for each integer n, $H \subset D_n$. It remains to show that if x is a point of K, then x is not in $\bigcap_{i=1}^{\infty} \operatorname{cl} D_i$. To this end, suppose that $x \in \left[\bigcap_{i=1}^{\infty} \operatorname{cl} D_i\right] \cap K$. There is an integer n so that x is not in $\operatorname{cl} \mathcal{O}_n^{-1}(V_n)$. Thus, $\mathcal{O}_n(x)$ is in $\operatorname{cl} \mathcal{O}_n(K) - V_n$. It follows that $\mathcal{O}_n(x)$ is not in $\operatorname{cl} W_n$; and so, x is not in $\operatorname{cl} D_n$ which is a contradiction from which it follows that $K \cap \left[\bigcap_{i=1}^{\infty} \operatorname{cl} D_i\right] = \emptyset$.

Now, suppose that X^{ω} is normal but X^{ω} is not countably paracompact. According to our Lemma A, there is a monotonic decreasing sequence $\{H_n\}$ of closed subsets of X^{ω} with no common part such that if $\{D_n\}$ is a sequence of open sets such that D_n contains H_n for each n, then $\bigcap C D_n \neq \emptyset$. Let x and y denote distinct parts of X and let x^{ω} (y^{ω}) denote that point of X each coordinate of which is x (y, resp.). Let

$$H = \bigcup_{n=1}^{\infty} \left[(\operatorname{cl} \, \mathcal{O}_n(H_n)) \times x^{\omega} \right] \quad \text{and} \quad K = \bigcup_{n=1}^{\infty} \left[(\operatorname{cl} \, \mathcal{O}_n(H_n)) \times y^{\omega} \right].$$

Then H and K are mutually exclusive closed subsets of X^{ω} . Since X^{ω} is normal, there are open sets U and V in X^{ω} such that cl $U \cap$ cl $V = \emptyset$ and such that $H \subset U$ and $K \subset V$. Note that for each n, cl $\mathcal{O}_n(H_n) \subset \mathcal{O}_n U$ and cl $\mathcal{O}_n(H_n) \subset \mathcal{O}_n V$. For each integer n, let $D_n = \mathcal{O}_n^{-1}(\mathcal{O}_n U \cap \mathcal{O}_n V)$. Now, $\bigcap_{n=1}^{\infty} \operatorname{cl} D_n \subset \operatorname{cl}(U \cap V) = \emptyset$ which is a contradiction from which the theorem follows. The following lemma was proved in [5]:

LEMMA C. The space X is perfectly normal if and only if for each closed set H there is a sequence $\{D_n\}$ of open sets such that $H = \bigcap_{n=1}^{\infty} D_n = \bigcap_{n=1}^{\infty} \operatorname{cl} D_n$.

Theorems B-D (and the methods of proof) should be compared to the results in [3].

THEOREM B. If $X \times Y$ is hereditarily countably paracompact, then either Y is perfectly normal or every countable discrete subspace of X is closed in X.

PROOF. Suppose that $X \times Y$ is hereditarily countably paracompact

and $M = \{x_1, x_2, \dots\}$ is a countable discrete subspace of X with a limit point x_0 . Let H denote a closed subset of Y. Let $M_1 = \{(x, y) \subset X \times Y | x = x_0, y \in Y - H\}$ and $Z = (M \times Y) \cup M_1$. For each integer n, let $K_n = \{(x, y) \in Z | x = x_n, y \in H\}$ and $H_n = \bigcup_{i=n}^{\infty} K_i$. Then $\{H_n\}$ is a monotonic decreasing sequence of closed subsets of Z with no common part. Since Z is countably paracompact, by Lemma A, there is a sequence $\{U_n\}$ of open sets in Z such that $\bigcap_{i=1}^{\infty} \operatorname{cl} U_i = \emptyset$ and $H_n \subset U_n$ for each n. For each integer n, let $D_n = \{y \in Y | (x_n, y) \in \bigcap_{i=1}^n U_i\}$. Clearly, $H \subset D_n$ for each n. Suppose that $y \in (Y - H) \cap \bigcap_{i=1}^{\infty} \operatorname{cl} D_i$. Then (x_0, y) is a point of Z that is in $\bigcap_{i=1}^{\infty} \operatorname{cl} U_i$ which is a contradiction. The theorem now follows from Lemma C.

THEOREM C. The compact space X is metrizable if and only if X^3 is hereditarily countably paracompact.

PROOF. It need only be shown that if X^3 is hereditarily countably paracompact, then X is metrizable. Since X^3 is homeomorphic to $X \times X^2$, it follows from Theorem B that X^2 is perfectly normal. Thus, X is metrizable since it is compact and has a G_{δ} -diagonal.

THEOREM D. X^{ω} is perfectly normal if and only if X^{ω} is hereditarily countably paracompact.

PROOF. Since any perfectly normal space is hereditarily countably paracompact [3], we need only show that if X^{ω} is hereditarily countably paracompact, then X^{ω} is perfectly normal. To this end, let x and y denote distinct points of X. For each integer n, let $Z_n = x^n \times y^{\omega}$; i.e., each of the first n coordinates is x and each remaining coordinate is y. Then the set $\{Z_1, Z_2, \cdots\}$ is a discrete subspace of X^{ω} that is not closed in X^{ω} . Now, for each n, X^{ω} is homeomorphic to $X^{\omega} \times X^n$; and so, by Theorem B, for each n, X^n is perfectly normal. Thus, by [3, Theorem 2], X^{ω} is perfectly normal.

REFERENCES

- 1. C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219-224. MR 13, 264.
- 2. T. Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686-687.
- 3. M. Katětov, Complete normality of Cartesian products, Fund. Math. 35 (1948), 271–274. MR 10, 315.
- 4. E. Michael, Paracompactness and the Lindelöf property in finite and countable cartesian products (to appear).
- 5. P. Zenor, On countable paracompactness and normality, Prace Mat. 13 (1969), 23-32. MR 40 #1975.

AUBURN UNIVERSITY, AUBURN, ALABAMA 36830