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OSCILLATION OF NONLINEAR SYSTEMS OF MATRIX
DIFFERENTIAL EQUATIONS

A. G. KARTSATOS

AgBsTrACT. For systems of matrix equations of the form
U'=A4¢ U0, V)V, V' =-—B¢U,YV)

it is shown here that the oscillation problem can be reduced to the
corresponding problem of “associated” (in some sense) scalar equa-
tions for which there exist numerous results. Furthermore, it is
also shown that many of the existing results concerning the equa-
tion

A@UY + B¢, U, UMY =0

can be considerably improved by application of the above method.

This paper concerns itself with the oscillation of systems of matrix
differential equations

* U = A¢t, U, V)V, V' =—B(U,V)

where U = (ui), V = (vi;), 4 = (ai;), and B = (b;;) are real
n X n matrices. By F(¢, U, V) =fy;¢, U, V) we mean f;;
=f.','(t, Uity * * *y Unny V11, * * °, ‘D,m). The functions aijy b.’,‘ will be
assumed continuous on I XR?", where I=[t,, + ). The matrices
A, U, V), B(¢t, U, V)U~! are symmetric for every pair { U, V} such
that det U0, and, moreover, 4 (¢, U, V) is positive definite for every
t&1 and every pair { U, V}. By a solution of (*) we mean here any
pair {U, V} of differentiable matrices which are defined on an in-
finite interval Iy yC I (depending on the particular pair) and satisfy
(*) on this interval. Extending the concept of a “prepared solution”
(from the linear case), we shall say that { U, V} is a prepared solu-
tion of (*) if it is a solution such that:

M Ur@Qve = v*au@®, t€luvy,

(R* denotes the transpose of the matrix R).

It is true that in the linear case we do not “lose” much by con-
sidering only prepared solutions, for, there, every solution is a linear
combination of prepared ones (Barrett [1]). Here we shall also be
concerned only with the prepared solutions of (*). The system (*) is
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said to be oscillatory, if for every prepared solution { U, V} of (%),
the det U has an unbounded sequence of zeros in Iyy. Recent re-
sults concerning the existence of solutions to linear equations allow
us to assume the existence of prepared solutions of (*), and this we
do throughout the paper without further mention.

The following known theorems concern the differential equation

**) (40U’ + B(t, U, U)U = 0.

THEOREM 1 (HowaRrD [3]). Suppose that A(t) is positive definite,
B=B(t), and, moreover,

(i) there exists a positive definite scalar matrix G=g(t)I such that

(i) J1" g @dt=+,

(iii) limey, (inf: x*K(f)x) =+ © where x is a column vector of
unit length,

K@) = f [G(s)B(s) — (1/4) Ao(s)(G'(5))*G71(s)Jds + 5 4.()G' (),

and
(iv) (G Ao(®)) 2 q(t) ] where g>0and [;}” q(t)dt=+ .
Then (**) is oscillatory.

THEOREM 2 (TomasTik [7]). Suppose that Ao(t)=1, B is positive
definite and

+w

) w76 40, w01t = 4
to

for every differentiable matrix A(t) such that det A(f)#0, and

M[A*(0)A ()] Ze>0. Then (**) is oscillatory.

THEOREM 3 (ToMasTik [7]). If B is as in Theorem 2 and Ao(f)
=r(t)I, where r(t) is a positive scalar function and [} r-1(t)dt=+ =,
then (**) is oscillatory.

THEOREM 4 (SWANSON [6]). If A, B are positive definite and A is
bounded above, and [;° M[B(t, A(t), A'(t))]dt=+ = for every differ-
entiable matrix A such that det A () #0, for all large t, then (**) is
osctllatory.

In the above theorems, a prepared solution for (**) is a solution
U(t), tE 1y, such that U*(t)A,() U'(t) = U*' () Ao() U(t), and M[4],
M[A4], - - -, N[A4] are the eigenvalues of a symmetric matrix A
ordered in the following way: M [4 ]2X.[4]= - - - 2N, [4].

Our aim here is to show that for large classes of systems of the
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form (*), the problem of oscillation can be reduced to that of corre-
sponding (in some sense) scalar equations for which there is an
abundance of oscillation criteria. At the same time we show how the
above theorems can be improved considerably by means of this
method. Before we state our main result, we show the validity of some
properties of nonoscillatory solutions of (*) which do hold in the
case of the equation (**). In fact, if { U, V} is a prepared solution of
(*) which is not oscillatory, then there exists an interval I,
=[t, +®)CIyy such that det U(f)#0, t&EI,. Consequently,
U—1(¢) exists on I, and, by the preparedness of U, V, we obtain

3) S = VU = [U¥FW*UU-! = [U*]-WW* = [VU-1]*

which proves that the matrix S(¢) is symmetric on I;. Now, by differ-
entiation of S(f), we obtain

@) SWO=—-SOA¢UW, VO)SE® — BL UW, V) UW®).

If, in addition, we assume that the matrix BU! is positive definite,
then (4) implies that S’(f) is a negative definite matrix, i.e. (as in
Tomastik’s Theorem 1 in [6]) S(t), V() are nonsingular on some
interval I, = [ts, + ©)CI,.

Our main result, which follows, extends a result of Barrett [1].

THEOREM 5. The equation (*) is oscillatory if for some k (1 <k =n)
and every pair of prepared differentiable matrices U, V with det U#0,
the equation

(aa (t, U@, V)Y + [B(, UW, VOIU-(®)]ux = 0,
t E [tO) + OO))
is oscillatory, where the matrix Aw(t, U, V) (which equals A(t, U, V)

with the kk-entry replaced by zero) is positive definite for any tE [to, + ®)
and any U, V as above.

(E)

ProOF. Assume the existence of a mnonoscillatory solution
{U®), V(t)}, tEIvy, of (¥) for which we have det U() =0, tEI,
= [t;, + ©)CIyy. Then from (4) we obtain

S'(t) = = S@[A@, U@, V() — Aut, U, VI)]SE)

5
® — [S® A, U@, V)S® + B, UQ), V() U (9]

which leads to the Riccati equation

©) St + AwDSi(®) + Qu®) =0, (€1,



100 A. G. KARTSATOS [September

where Au(t) =aw(t, U@t), V(1)) and Qu(t) = [B({, U®), V() U~1(t) Jw
because all the diagonal elements of SA4:S are nonnegative (recall
that S is symmetric).

Now, by use of the substitution x(t) =exp[[; Su(s)ds], the equa-
tion (6) is transformed into

(7) (A (') + Quzx = 0

and this is oscillatory by hypothesis. In view of the fact that x(¢) is
a continuous positive solution of (7), the contradiction follows. Thus
(*) is oscillatory.

It is clear that in the above theorem we made use of the positive
semidefiniteness of the matrix 4 only in order to carry out the step
from (5) to (6). It is understood that the conclusion would remain
valid if one could obtain the desired contradiction directly from the
equation

®) Su(®) + [SOAW U, VISO]u + [BE, UD, V) U B)]w = 0,

and this reduces the problem to the study of the term in the middle.

We also note that the result in Theorem 5 can be proved if we
suppose that (E) is oscillatory for any pair of differentiable matrices
U,V such that U*V = V*U = positive definite, provided that
NUE= 4@, U@, V)dt]=+4 « and BU-!'=positive definite for
matrices as in the theorem. In fact, in this case (4) implies

S =S () + f tS“B(s, U(s), V(s5))S™(s)ds
©) o
+f A(s, U(s), V(s))ds

from which follows (as in [7]) the positive definiteness of S(¢). More-
over, U*V = U*SU. This assumption is equivalent to N, [A*(¢)4(¢) ]
= ¢>0if the matrix 4¢is as in Theorem 3.

Since the extension of results of the type of Theorems 1-4 to the
system (*) is quite straightforward, we prefer to show, instead, that
the procedure followed here leads to better results.

Consider first Theorem 1. In this case we have 4 =A4;'(t) and
B=B,(t) U. Here we can merely suppose that there exists a function
g(t)>0, [ g=1(t) = + =, such that

im [ [e9)oh(s) — Fa g () (0)lds + 3T (g (®) = + o

t—+ o t
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and
[T (2] = ¢(t) > 0 with f +wq(t)dt =+,

and the result follows as in Howard’s theorem in [2].
As regards Theorem 2, we can replace (1) by the following con-
siderably weaker assumption: for some k (1 <k =<n)

+o0
(10) f t=Bu(t, A(t), A'())dt = + 0<e<)

0

for matrices as in Theorem 2, and the conclusion follows from a
theorem of Mikusifski in [4].

Theorem 3 can be improved if we assume the existence of a func-
tiong>0, [ g~1(t)dt =+ »,and

+o0
[ 018, 40, 40) - 1OE O 0Lt = +o

0

for every matrix 4 as in Theorem 3. This result follows from Opial’s
theorem in [5]. In the case g(f)=1, we obtain Tomastik’s theorem.
Finally, it is evident that we can obtain a result similar to that of
Theorem 4 without requiring that the matrix 4, be bounded above,
but satisfying the assumptions of our theorem.
The author wishes to thank the referee for some helpful suggestions.
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