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QUASILINEAR SYSTEMS WITH SEVERAL
PERIODIC SOLUTIONS1

JANE CRONIN

Abstract. By using topological degree, it is proved that for a

certain class of quasilinear systems of ordinary differential equa-

tions of the form

x = A (<)* 4- tufix, t, it) + mix, t, it) + hit)

where e, it are small parameters and A, f, g, h are periodic in /,

there exist at least two periodic solutions.

The classical method for studying the resonance case of the prob-

lem of finding periodic solutions of quasilinear systems of ordinary

differential equations is to derive a system of bifurcation equations

and apply the implicit function theorem to this system (Coddington

and Levinson [l], [2, Chapter 14]). An extension of this method is

to use topological degree instead of the implicit function theorem. If

the degree is nonzero, there is at least one periodic solution; more-

over by using Sard's theorem and varying certain of the terms in the

equation arbitrarily slightly, it can be shown that the degree is a

lower bound for the number of periodic solutions of the varied system

[3, Chapter II ]. Here we study the problem of estimating the number

of solutions in the case that the topological degree may be zero. We

will show that for the special class of quasilinear systems

(E) x = Ait)x + tufix, t, n) + nix, t, n) + hit)

where e, p. are small parameters, the linear part of / in x is well be-

haved and g is essentially an even function (the precise hypotheses on

(E) will be described later), there are at least two solutions of (E).

We assume throughout that the following conditions are satisfied

on (E).

(1) The elements of matrix A(t) and the components of/, g, h are

defined for all real t and have continuous first derivatives in t for all t.

(2) For all t, the components of / and g are defined for ju in an in-

terval containing u = Q and for all x in real Euclidean »-space. The
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components of / and g have continuous first derivatives in ß and in

the components of x.

(3) Matrix A (t) and functions/, g, h have period T in t.

Let M(t) be a fundamental matrix of x = A (Ox such that M(0) is

the identity matrix. If x(t, ß, e, c) is a solution of (E) that satisfies

boundary condition c at ¿ = 0, i.e., if x(0, ju, e, c) =c, then a necessary

and sufficient condition that x(t, ß, e, c) have period P in t is that c

satisfy the equation

[M(T) - M(0)]c + M(T)  f   [Misfl-ifafcis, ß, e, c), s, „]
«^ o

(1) + ßg[x(s, ß, e, c), s, ß] + h(s)}ds

= 0.

(See [3, Chapter II].) We assume complete resonance, i.e., we assume

M(T) — M(0) =0. (Our study is applicable to the case where the

resonance is not complete, i.e., where 0 <rank [M(T) — M(0) ] <«, but

this case is more complicated and involves no new principles. So we

use the stronger hypothesis of complete resonance.) First a necessary

condition that (1) can be solved for c as function of ß in neighborhoods

of c = 0 and ß = 0 for a fixed e is that

fT[M(s)]-
J 0

(2) I    [M(s)]~lh(s)ds = 0.
J o

See [3, p. 69]. So we assume from now on that (2) holds. Thus (1)

becomes

tß I    [M(s)]-f[x(s, ß, e, c), s, ß]ds
" o

(3)

+ ß J     [M(s)]-^g[x(s, ß, e, c), s, ß]ds = 0.
o

Dividing by ß and letting /i—K) in the resulting equation, we obtain

e f   [M(s)]-f[x(s, 0, e, c), s, 0]ds
J o

(4)

+ I    [M(s)]^g[x(s, 0, e, c), s, 0]ds = 0.
J o

Note that x(s, 0, é, c) =x(s, 0, 0, c). Hence (4) becomes:
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(5)

i f   [Mis)]~lf[xis, 0, 0, c), s, 0]ds
J 0

+ f   [2f(í)]-1^(í,0,0,c),í,0]áí = 0.
J n

Regard e as fixed. Then in order to determine whether (3) can be

solved for c as a function of a in neighborhoods of c = 0 and ß = 0, we

study the topological degree of the mapping of c-space (i.e., real

Euclidean «-space) into itself described by the left side of (5). Let

e f   [If (i)]-1/^*, 0, 0, c), s, 0]ds = eF(c)
Jo

and

[Jf (íJj-'glXí, 0, 0, c), s, 0]ds = Gic).
o

Also let U be a bounded open set in c-space. We denote the Brouwer

degree of a mapping A relative to U at the point p by deg(^4, f7, p).

f" n

Lemma. If deg(G, U, 0) exists, then if | e | is sufficiently small,

deg(€p4-G, U, 0) exists and equals deg(G, U, 0).

Proof. Follows from the definition of degree and the invariance

under homotopy of the degree.

Theorem 1. If deg(G, U, 0) is odd, there is an e0>0 such that if ei

is any fixed real number with | ei| <€o, then there is a 5(ei) such that for

all Li with \n\ <5(ei), the equation (E) with e = eihas a periodic solution.

Proof. By the lemma, if | e j is sufficiently small then deg(eP4-G, U, 0)

is odd and hence nonzero. The theorem follows from the derivation

of (3), (4) and (5).
Now suppose P(c) =L(c)4-P(c) where Lie) is linear in c and

limidH.0 (P(c)/|c|) =0. Suppose Lie) is a nonsingular linear map so

that deg(«L, B, 0) = ± 1 where £ is a closed ball with center 0 and

arbitrary radius.

Theorem 2. If lim^i^o (G(c)/|c|) =0 and deg(G, V, 0) is defined
and is even, then for each fixed sufficiently small ti, there is a ô(ei) such

that equation (E) with e = tihas for each n with |ju| < 5(«i) at least two

distinct solutions.

Proof. For e sufficiently small,

(6)      deg(ÉZ, + eR + G, V, 0) = deg(G, V, 0) = even number.
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Take a fixed sufficiently small «. Since for any B, deg(€P, B, 0)

= +1 and since limito (R(c)/\c\) =0 and lirri|c|^0 (G(c)/|c|) =0, it

follows that if B has a sufficiently small radius, then

(7) deg(eL + eR + G, B, 0) = deg(e¿, B, 0) = ±1.

But by a basic property of the degree,

deg(iL + eR + G, U -B, 0)
(o Ï _ _

= deg(eL + eR + G, U, 0) - deg(«L +tR + G, B, 0).

By (6) and (7), the expression on the right in (8) is a number different

from zero. Thus equation (3) has a collection of solutions ci(p) (at

least one for each ß with |ju| < 8(e)) such that each Ci(ß) is in U—B.

By (7), equation (3) has a collection of solutions c2(ji) such that each

ct(ß) is in B. This completes the proof of the theorem.

Corollary. If lim|C|_0 (G(c)/\ c\ ) =0 and G is an even function and

deg(G, U, 0) is defined, the conclusion of Theorem 2 holds.

Proof. If G is even then deg(G, U, 0) is even by Krasnosel'skiï

[4, p. 223, footnote].

Example. Let the components of f(x, t, 0) and g(x, t, 0) be poly-

nomials in the components of x with coefficients which are periodic

(of period T) functions of t and let U be a closed ball Pi with center

at the origin. Then we can apply Theorem 1 if the components of g

are odd polynomials and apply Theorem 2 if the components of g are

even polynomials whose lowest order terms are all of degree è 2 and

if eL(c) is nonsingular. To make the application, it is necessary to

show that deg(G, Pi, 0) is defined. One situation in which this can be

done is the following: if the components of g(x, t, 0) are homogeneous

polynomials all of the same degree, then the components of G are

homogeneous polynomials Gi, G2, • • • ,Gn all of the same degree, and

deg(G, Pi, 0) is defined if the resultant of Gi, • • • , G„ is nonzero.

Remarks. 1. It is natural to raise the question of whether the

collections Ci(p), c2(ß) which appear in the proof of Theorem 2 define

continuous functions of ju. The collection c2(p) is a continuous func-

tion because in applying (7) one is actually applying the implicit

function theorem. But the collection ci(p.) may be much more com-

plicated. (It might happen, for example, that for some value of ß,

there is an infinite set of solutions of (3).)

2. Results parallel to the above can be obtained by parallel argu-

ments for the equation
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x = Ait)x 4- ftfix, t, n) 4- Mßgix, t, n)

where u is a small parameter and M is a constant such that | A4" J is

sufficiently large.
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