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REALCOMPACTNESS AND PARTITIONS OF UNITY1

G. DE MARCO2 AND R. G. WILSON3

Abstract. A characterization of realcompactness in terms of

locally finite open coverings and associated partitions of unity is

given. Another proof of two well-known theorems of Katëtov and

Shirota is obtained.

Introduction. Partitions of unity on a topological space X have

been extensively studied in the case that X is paracompact, since E.

Michael's result [Mi, Proposition 2] showed that a paracompact

space is characterized by the existence of a wide enough class of

partitions of unity. Partitions of unity on a general topological space

X have been used, without explicit mention, to prove a key lemma in

the book [GJ, Lemma 13.7]. Our purpose in this work is to study

some relations between ideals of CiX) and partitions of unity on X

and give a characterization of realcompactness analogous to that

given by Michael for paracompactness. As a by-product, we obtain

a proof of Katëtov's result: A paracompact 7i space in which every

closed discrete subset has nonmeasurable cardinal, is realcompact.

Also, we get another proof of Shirota's theorem : Under the same non-

measurability assumption, a Tz± space is realcompact if and only if it

admits a complete uniformity.

1. If X is a topological space, CiX) denotes the ring of real valued

continuous functions on X. Terminology and notations concerning

CiX) are taken from [Gj], while paracompactness and complete

regularity are intended in the sense of [Ke ].

A partition of unity of a space X is a set Í>CC(X) such that:

(a) (b è 0 for every (b G$ ;

(b) 22*£*<t>(x) = l for all xEX.
A partition of unity <£ which satisfies the further assumption:
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(c) jcoz <p=4>~ [P\{0{ ] :<t>E&} is a locally finite cover of X;

is said to be locally finite.

If F is a partition of unity on a space X, then there exists a locally

finite partition of unity í> such that every <j>E$ is a multiple (in

C(X)) of some uEF (argue as in [E, Lemma 2, pp. 208-209]: if

g(x) =sup„<EF u(x), we have gEC(X), so that, for every uEF,

fu = (u — \g)\J0EC(X); {coz fu:uEF} is a locally finite cover of X;

and Z(fu) is a neighborhood of Z(u), so that/« is a multiple of u

[GJ, ID]. It follows that {/«(J^uEf/u)-1:wGP} is the required

partition of unity).

A partition of unity $> is said to be minimal if $> is locally finite and

r/>«— [l] is nonempty for every <¡>E$ — equivalently, if {coz <¡>:d>E$}

is a minimal (i.e. irreducible) cover of X. By Zorn's lemma, every

locally finite cover of a space X has a minimal subcover; hence, if $ is

a locally finite partition of unity, there exists ^oC^ such that

{<!>(^l<f>e$aip)~1'-<pE$o} is a minimal partition of unity. We have

proved the following:

Lemma. Let X be a topological space, I an ideal of C(X). If I con-

tains a partition of unity, then I contains a minimal partition of unity

(in particular, a locally finite partition of unity).

Every partition of unity is assumed hereafter to be locally finite.

To give an upper estimate of the cardinality of a minimal partition

of unity <£, it suffices to observe that CU= {<£<— [(2/3, l]]:0G*} is a

discrete family of (nonempty) open sets, such that | cu| = |i>| (if 5 is

any set, |S| denotes its cardinality).

Hence, if m is a cardinal number, and every discrete family of open

subsets of X has cardinality ^m, then every minimal partition of

unity has cardinality ^nt; in particular, this is true if X is a Pi space

in which every closed discrete subset has cardinality at most tn.

2. Any minimal, infinite partition of unity on a space X generates a

free ideal of C(X). And if an ideal / of C(X) contains a partition of

unity, then / is free. The next theorem gives a necessary and sufficient

condition for a free ideal of C(X) to contain a partition of unity.

First, let us say that a cover S of a topological space X is uniform if

there exists a continuous pseudometric donX and a positive number

« such that the (open) ¿-spheres of radius e are a refinement of S.

Theorem. Let X be a topological space and I a free ideal of C(X).

Consider the following propositions :

(a) / contains a partition of unity.

(b) The cover e(I) = {cozu'.uEl} is uniform.
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(c) For some continuous pseudometric d on X the z-filter Z[l] is not

d-Cauchy.

For every free ideal I of C(X), (a) and (b) are equivalent and imply

(c). If I is maximal, (c) implies (b), hence (a), (b) and (c) are equiv-

alent.

Proof, (a) implies (b). Let«i>C7 be a partition of unity. For every

x, y EX put dix, y) = 2«e* \<b(x) ~<biy)\ < so that a" is a continuous

pseudometric on X. For every xEX, let Ux be the open ¿-sphere of

center x and radius 1, and let fa, ' ' ' > fa be the set of all <j>E$ such

that fax) 9*0. If yEZ(fa)C\ ■ ■ ■ C\Z(fa), we have d(x, y) =
X)*<E* \fax)—fay)\ ̂  X)"-i0¿(x) = 1-Thus> P*Ccoz(0i4- • • • +fa),
that is, { Ux:xEX} refines 6(7).

(b) implies (a). Let d he a continuous pseudometric on X, e a posi-

tive real number such that the open ¿-spheres of radius e refine 6(7),

and let 11 be the family of open ¿-spheres of radius e/2. Since the

pseudometric space (X, d) is paracompact (see [Ke]), 11 has a locally

finite refinement V by ¿-open sets. And since ¿-open sets are cozero

sets, V= {coz f'fEF}, with FECiX). For every fEF, there exist

xEX and uEI such that coz /C {y£X:¿(x, y) <e/2} C {yGX:

¿(x, y) <«} Ccoz u. This shows that Z(/) is a neighborhood of Z(m) ;

then / is a multiple of u (see again [GJ, ID]), i.e. /£7. It follows

that {f2(22e£F g2)_1:/£F} is a partition of unity contained in 7.

It is clear that (b) implies (c). To conclude, assume that 7 is

maximal, that d is a continuous pseudometric on X and that e is a

positive real number such that every ZEZ[l] has ¿-diameter greater

than «. For every x£X put Zx = {yEX:d(x, y)^e/2} ; Zx is a zero

set, and its ¿-diameter is at most e, hence ZxEZ[l]. By maximality,

there exists ZGZ[7] such that ZxnZ = 0, i.e. ZXEX\ZE&(I). Then

the family of open ¿-spheres of radius e/2 refines 6(7).

3. The following theorem is essentially a formulation, in C(X)

terminology, of the Proposition 2 of [Mi].

Theorem. Let X be a completely regular space. The following are

equivalent :

(a) X is paracompact.

(b) Every free ideal of CiX) contains a partition of unity.

(c) Every free z-ideal of CiX) contains a partition of unity.

Proof, (a) implies (b). Apply Theorem 2; in a paracompact space,

every open cover is uniform (see [Ke]). Alternatively, use [Mi,

Proposition 2].

(b) implies (c). Trivial.
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(c) implies (a). We show that every open cover S of X has an open

locally finite refinement. We may assume that S has no finite subcover,

and, by complete regularity, we may also suppose S= {coz/:/GPJ,

PCC(X). Then the family {z(f)\fEF} generates a free z-filter 3?.

Let $> be a (locally finite) partition of unity contained in the z-ideal

Z^[îF]. For every <t>E$ choose /M, • • • , f*,„^EF such that Z(<p)

DZ(Ui)r\ • • ■ nz(/f%). Hence {coz (</>/„,,) :</>G$, i = l, ■ ■ ■ , «*j
is an open locally finite refinement of S.

4. Theorem 2 shows that a free maximal ideal of C(X) contains a

partition of unity if and only if its z-filter contains no small sets. Here

we establish an algebraic characterization of maximal ideals which

contain a partition of unity.

Theorem. Let X be a topological space, M a maximal ideal of C(X),

0M the intersection of all prime ideals contained in M. The following are

equivalent.

(a) M is hyperreal.

(b) Om contains a countable partition of unity.

(c) M contains a partition of unity of nonmeasurable cardinal.

Proof, (a) implies (b). The construction used in the proof is taken

from [GJ, 13.7]. Let sEC(X) be such that M(s) is infinitely large.

For each «GZ (Z is the set of integers) define ipnEC(R) as follows:

The support of \pn is [«—1, w+l]; \pn(n) = 1; \¡/n is linear in [« — 1, n]

and in [«, w+l]. Put (pn—^nos. Then {<¡>„'.nEZ} is a partition of

unity; and Z(tf>„)2 {xEX:s(x) è« + l} =Zn. By [GJ, 13.7], Z„
GZ[Om], that is, 4>„ EOm for every nEZ.

(b) implies (c). Obvious.

(c) implies (a). Let «Ê be a partition of unity contained in a maximal

ideal M of C(X). Suppose that M is real, and consider «I? as a discrete

topological space. For every/GC($>), put L(f) = iP( ]C*e*/(<£)$)• It

is easily seen that P is a positive linear functional on C(i>). Further-

more, P(l) = 1 (so that P^O) and P(x«) =0 for every <{>E$ (x* ls the

characteristic function of {(/>} in$). It follows from [M] that |$>| is

measurable.

5. Theorem 4 gives a characterization of realcompactness which is

suggestive of paracompactness.

We define a maximal open cover of a topological space X as an

open cover which is maximal in respect to the property of being

finitely inadequate (i.e., of having no finite subcover). By Zorn's

lemma, every finitely inadequate open cover is contained in a maxi-

mal open cover. A cover by cozero sets is said to be basic.
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Theorem. Let X be a completely regular Ti-space. The following are

equivalent.

(a) X is realcompact.

(b) Every maximal open cover has a locally finite, countable basic

refinement.

(c) Every maximal open cover has a locally finite basic refinement of

nonmeasurable cardinal.

(d) Every free maximal ideal of C(X) contains a partition of unity

of nonmeasurable cardinal.

Proof, (a) implies (b). Let S be a maximal open cover of X.

By complete regularity of X, and maximality of S, the set

SJ= {ZEZ(X) :X\ZE&} is a prime, free z-filter. By the first part of

Theorem 4, the prime ideal Z^ï] contains a countable partition of

unity <ï>. Thus, {coz fa\faE$} is the required refinement of S.

(b) implies (c). Trivial.

(c) implies (d). If M is a free ideal of C(X), the open cover Q(M)

= {coz u'.uEM} is contained in some maximal open cover S. If

{coz/:/GF}, FEC(X), I P| nonmeasurable, is a locally finite basic

refinement of S, thenf>= {/2(2^rjeFg2)_1'/GP} is a partition of unity

of nonmeasurable cardinal. The maximality of M implies F EM,

hence $EM.

(d) implies (a). Theorem 4.

6. In this paragraph we present some corollaries of the previous

results. By Theorem 5, Theorem 3 and Lemma 1 we obtain Katëtov's

result [K, Theorem 3]:

Let X be a paracompact Pi space. X is realcompact if and only if

every discrete family of open subsets of X has nonmeasurable cardinal.

By Theorem 4, Theorem 2 and Lemma 1 we obtain Shirota's

theorem ([S]; [GJ, 15.21]), which we state in the following form.

Let X be a topological space in which every discrete family of open

sets has nonmeasurable cardinal, and let d be a continuous pseudometric

on X. Then every real z-ultrafilter is d-Cauchy.

Remark. Katëtov's theorem is a particular case of Shirota's

theorem (see [S, Remark added in proof]). And in fact, Theorem 3

and Theorem 2 imply that every paracompact space is complete in

its largest uniformity.

References

[E] R. Engelking, Outline of general topology, North-Holland, Amsterdam; PWN,

Warsaw, 1968. MR 37 #5836.
[Gj] L. Gillman and M. Jerison, Rings of continuous functions, University Series

in Higher Math., Van Nostrand, New York, 1960. MR 22 #6994.



194 G. DE MARCO AND R.  G.  WILSON

[M] G. W. Mackey, Equivalence of a problem in measure theory to a problem in

the theory of vector lattices, Bull. Amer. Math. Soc. 50  (1944), 719-722. MR 6, 70.
[Mi] E. A. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4

(1953), 831-838. MR 15, 144.
[K] M. Katëtov, Measures in fully normal spaces, Fund. Math. 38 (1951), 73-84.

MR 14, 27.

[Ke] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR

16, 1136.

[S] T. Shirota, A class of topological spaces, Osaka Math. J. 4 (1952), 23-40. MR
14, 395.

University of Texas, Austin, Texas 78712


