
PROCEEDINGS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 30, No. 1, September 1971

SHELTERED MODULES AND RINGS1

SETH WARNER

Abstract. The problem of determining when a module (ring)

admits an indiscrete, Hausdorff linear (ideal) topology is discussed

in terms of sheltered modules (rings).

Our purpose here is simply to point out the relevance of the notion

of sheltered submodule (ideal), introduced by Leptin [4, p. 245], to

the problem of determining when a module (ring) admits a proper

linear (ideal) topology, recently discussed by Höchster [3]. The

topology of a topological module is linear if the open submodules form

a fundamental system of neighborhoods of zero; a linear topology is

proper if it is Hausdorff but not discrete. Similarly, the topology of a

ring is an ideal topology if the open ideals form a fundamental system

of neighborhoods of zero; an ideal topology is proper if it is Hausdorff

but not discrete.

A proper submodule U of a (not necessarily unitary) module E is

sheltered [4, p. 245], [2, Exercise 18, p. 110] if the set of submodules of

E strictly containing U has a smallest member S, called the shelter of

U. A module £ is a sheltered module if (0) is a sheltered submodule of

E. If U is a proper submodule of E, then E/U is a sheltered module if

and only if U is a sheltered submodule of E. A sheltered module

clearly admits no proper linear topology; one of our purposes is to

determine the relationship between modules admitting no proper

linear topology and sheltered modules.

The definition suggests that a sheltered submodule is in some sense

large. Indeed, a maximal submodule is clearly sheltered; in a vector

space the sheltered subspaces are precisely those of codimension 1;

more generally, the sheltered submodules of a semisimple module are

precisely the maximal ones by [l, Theorem 1, p. 32]. In general, if U

is a submodule and if x(£ U, then clearly U is a sheltered submodule

and x belongs to its shelter if and only if U is maximal in the set of all

submodules not containing x, in which case its shelter is the sub-

module generated by U and x. Consequently by Zorn's lemma, every
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submodule is the intersection of sheltered submodules [2, Exercise

18(a), p. 110]. Therefore, the filter base generated by all sheltered

submodules is a fundamental system of neighborhoods for a Hausdorff

linear topology; consequently, if E admits no proper linear topology,

(0) is the intersection of finitely many sheltered submodules.

Theorem 1. Let E be a nonzero module. The following statements are

equivalent :

Io. E admits no proper linear topology.

2°.  There exist sheltered submodules  Ui, • • • ,  Un of E such that

UiC\ ■ ■ • rw» = (o).
3°. E is isomorphic to a submodule of the cartesian product of finitely

many sheltered modules.

Proof. We have just seen that Io implies 2°. If 2° holds, E is

isomorphic to a submodule ofPI">i (E/U,), so 3° holds. If a module

admits no proper linear topology, neither does any submodule (for

otherwise the filter of neighborhoods of zero of the submodule would

be a fundamental system of neighborhoods of zero for a proper linear

topology on the module). As a sheltered module admits no proper

linear topology, to show that 3° implies Io it suffices to show that the

cartesian product of modules admitting no proper linear topology

also admits no proper linear topology; a proof of this fact is a simpli-

fication of the proof of the following theorem, which in turn is essen-

tially the proof of [3, Theorem 2].

Theorem 2. A subdirect sum of finitely many rings admitting no

proper ideal topology also admits no proper ideal topology.

Proof. If A is a subdirect sum of Ai, • • • , An and if ir is the

canonical projection fromJX".! AiontoY\jZl Ai} then A is a subdirect

sum of 7r(^4) and An- Hence by induction it suffices to consider the

case n = 2. If Fis an ideal of A, then Vx= {xEAi'.(x, 0)EV} is an

ideal of .¡4i, for if aEAi and xE Vi, then there exists yEA2 such that

(fl. y) EA, whence (ax, 0) = (a, y) (x, 0)EV and similarly (xa, 0) E V,

and thus ax, xaE Vi. The proof now proceeds like the first half of the

proof of [3, Theorem 2 ].

An artinian module E admits no proper linear topology, since for

any linear topology on E there is a minimal open submodule. The

prominence of sheltered submodules in an artinian module is indicated

in the following theorem.

Theorem 3. A unitary module E is artinian if and only if each prop-

er submodule of E is the intersection of finitely many sheltered sub-

modules.
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Proof. If M, U, and 5 are submodules such that MÇZ UÇZS, then

clearly U is a sheltered submodule with shelter S if and only if U/M

is a sheltered submodule of E/M with shelter S/M. The condition is

therefore necessary by Theorem 1, since a quotient module of an

artinian module is artinian. Conversely, if M is the intersection of a

decreasing sequence of submodules, the condition implies that E/M

admits no proper linear topology and consequently that the sequence

is stationary.

Theorem 4. If E is a module, every proper submodule of E is

sheltered if and only if the set of all submodules of E is well ordered by

inclusion.

Proof. Necessity. Let 3IÍ be a nonempty set of submodules, and let

N = f){M:ME^l}- H A6Ë3TC, then every member of 9TC properly con-

tains N, so N is proper and every member of 9TC contains the shelter 5

of N, whence N^SZ)N, a contradiction. Thus every nonempty set of

submodules contains a smallest member.

Sufficiency. If if is a proper submodule, the smallest of the sub-

modules strictly containing N is clearly the shelter of M.

If A is a ring, then the ideals of A are precisely the submodules of A,

regarded as a module over the subring of endomorphisms of the addi-

tive group of A generated by right and left multiplications. Applying

the general definition to this situation, we call an ideal u of A sheltered

if the set of all ideals strictly containing u has a smallest member g,

called the shelter of u ; A is a sheltered ring if (0) is a sheltered ideal of

A. Clearly a sheltered ring admits no proper ideal topology.

Theorem 5. Let A be a nonzero ring. The following statements are

equivalent :

Io. A admits no proper ideal topology.

2°. There exist sheltered ideals Ui, • • • ,unofA such that UiM • • ■ C\

u„ = (0).
3°. A is isomorphic to a subdirect sum of finitely many sheltered rings.

Proof. By Theorem 1, Io implies 2° and 2° implies 3°. By Theorem

2, 3° implies Io.

In [3, Theorem l] Höchster characterized those commutative rings

with identity that admit no proper ideal topology in terms of the

annihilators of their maximal ideals. We shall determine those maxi-

mal ideals having nonzero annihilators and their annihilators in

terms of a minimal family of sheltered ideals whose intersection is (0)

and their shelters, first for sheltered rings and then in general; this

will make evident once again the necessity of the conditions given in

[3, Theorem l].
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Theorem 6. Let A be a sheltered commutative ring with identity, let ê

be the shelter of (0), and let m = Ann ê. Then m is a maximal ideal and

consists of all zero-divisors of A, and á = Ann m ; in particular, Ann m is

a principal ideal. If A is noetherian, then A is artinian and m is its only

maximal ideal.

Proof. Clearly m is a proper ideal. To show that m is maximal, let

a(£m. Then there exists sE% such that as9¿0, so Aas(~\§9¿(0),

whence Aas = %. In particular, there exists bEA such that bas = s, so

(ba — l)s = 0; the annihilator of ba — 1 is, therefore, a nonzero ideal, so

it contains 8, and consequently ba —IE Ann ê = m. Thus A/m is a

field, so m is maximal. By definition, every element of m is a zero-

divisor. Conversely, if c is a zero-divisor, then its annihilator is a non-

zero ideal and hence contains ê, so c£Ann g = m.

We may regard Ann m as a vector space over A /m; the subspaces of

the (A/m)-vector space Ann m are precisely the ideals of A contained

in Ann m; therefore Ann m has a smallest nonzero subspace 3, so

Ann m = 8. The final assertion follows from the proof of [3, Theorem

4]. Alternatively, we may observe that f)r=i mn = (0) by Krull's

theorem [5, Theorem 12, p. 216], whence mn= (0) for some w^ 1 as A

admits no proper ideal topology; therefore as A/m is a field, A is

artinian by [l, Proposition 12, p. 71 ] ; as m is nilpotent, m is contained

in the radical of A, so m is the only maximal ideal of A.

Theorem 7. Let A be a commutative ring with identity that admits no

proper ideal topology. Let iti, • • • , u„ be sheltered ideals of A such that

fl"=i U. = (0) but for each iE [l, »], UiQOfri Uy. For each iE [l, n] let «,-

be the shelter of it,-, let m< = (u,:e¿), let K(i) = {jE [l, n] :my = ttti}, and

let ki be the number of integers in K(i).

Io. The maximal ideals of A having nonzero annihilators are precisely

the ideals nu, • • • , m„, and Uï=i mk is the set of all zero-divisors of A.

2°. Ann m¿= (Hyex«) %i)C\(r\j€K<.i) Uy), a nonzero ideal generated by

not more than ki elements.

3°. For each nonzero aEA there exists t£[l, n] such that Aaf~\

Ann m<7¿(0).

4°. If A is noetherian, then A is artinian and nu, ■ ■ • , mn are its

only maximal ideals.

Proof. Let 0< be the canonical epimorphism from A onto the

sheltered ring A/Ui. Clearly <£¿(nti)=Ann 0,-(8<), so, by Theorem 6,

</>,(m,) is a maximal ideal of A/Ui and its annihilator is <pj(&,). As

m¡2Uí, therefore, tn< is a maximal ideal of A. Let xEAnn ttt,-. Then

<pj(x)EAnn d>j(m.i) for all j£[l, «]; iijEK(i), then 0,-(at)G^y(«y) by



12 SETH WARNER [September

Theorem 6, whence xEfy; if j(£K(i), then nt¿+my = yl, so <£y(m,)

= A/Uj and hence has a zero annihilator, whence xGuy. Thus Annm<

Q(C\seK«) «>)n(n>€/c(o u,). Conversely, if zG«y where jEK(i),

then lttiac = tny#ÇUy; hence if »GOIyEJc«) 8y)n(nyctic<o Uy), then ntiX

CflJ.! Ui = (0), so x E Annm,-. Therefore Ann m¿ = (flyexco 8y)

n(n>4K(o Uy). This ideal is nonzero, since ô/MOy*.- Uy) 5^ (0) ; indeed,

as UiCEfly^i Uy, Uj + fly^» Uy¡28¿; let sE$i, sCu¿; then s = u+v where

uEv-i and vEO&i Uy, so v = s — uE$iC\(Cl&i Uy) and u^O. By [5, Re-
mark, p. 215], to complete the proof of Io it suffices to show that

every zero-divisor a of A belongs to some m,. Let ax = 0 where Xt¿0;

then x£jEu» for some *, so <pi(a) is a zero-divisor of ^4/u¿, whence 4>i(a)

E<t>i(mi) by Theorem 6 and thus a Em¿.

To complete the proof of 2°, we note that the canonical mappings

of the G4/rrti)-vector spaces

Ann nti = (     f]    «,- ) H (     fl    Uy )
\ yex(i)    /      \ yix«)    /

-*(   n  «i)/(   n  uj)-» n (Vuy)
\ yEK(t)     / /    \ yeK(t)     /       yex«)

are monomorphisms; by Theorem 6, öy/uy has dimension 1 over

A/rriiior each jEK(i), so Ann tn¡ has dimension ¿k,; thus 2° holds.

Statement 3° follows from Io and [3, Theorem l]; we give a proof

not involving Zorn's lemma. First, if b5^0, then Abr\$i¿¿ (0) ; indeed,

the assertion is clear if bEiW, otherwise Ab+Ui^Si, so if sE8i but

5^u¿, then xb-\-u = s for some m£u,, whence xb = s — u, a nonzero ele-

ment of $i. Therefore if a^O, there exists xiEA such that XiöG^i and

Xia^O; hence there exists x2EA such that x2(xia) E$iC\8i and Xi(xia)

5^0, etc.; in sum, Aar\(C\ni=l %/)jé(ÇS). To prove 3°, therefore, we may

assume that aGfl*=i 8«- If a$Ann nti, then there exists yiGuti such

that yiar^O and yiöGui as aG^i; if yi<xGAnn rrt2, there exists y2Etn2

such that y2(yia) ^ 0 and y2(yia) Gu2PiUi as yi <zG32; continuing in this

way, we arrive at r<n such that yr • • • yia ^0 and y, • • ■ yi«G

Annntr+i, for otherwise y„yn-i ■ • ■ yia^O but yn • • • yiaEtinC\ ■ • •

CWXi = (0), a contradiction.

Again, 4° follows from Io and the proof of [3, Theorem 4]; it also

follows from Theorem 6 since every maximal ideal m must contain

some Ui (otherwise m-f-U; = ^4 for all i, so m = m + n"=i Ui = A, a con-

tradiction), so if A is noetherian, then nti, ■ • ■ , mn are the only

maximal ideals by Theorem 6. Also by Theorem 6, each </>¿(m.) is

nilpotent, so the radical of A is also as f)",i u,= (0), and therefore A

is artinian,
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In [2, Exercise 17(b), p. 11] it is incorrectly asserted that a

module admitting no proper linear topology is artinian. Leptin [4, p.

248] gave an example of a nonartinian, sheltered module. Here is an

example of a commutative, nonnoetherian, sheltered ring. Let B be a

basis of an infinite-dimensional vector space A over a field K, let e, z

be two elements of B, and let C = B— [e, z}. To define a multiplica-

tion on A we indicate the product of elements of B as follows: eb = be

= b for all bEB; for all c, dEC, cd = dc = z if C9¿d and c2 — 0; cz = zc

= 22 = 0 for all cEC. Clearly A is a commutative ring with identity e,

and the subspace m of codimension 1 generated by C\J {z} is a maxi-

mal ideal satisfying m3 = (0). Consequently, m is contained in the

radical of A, so m is the only maximal ideal of A, i.e., A is a local ring.

To show that zEAa if a^O, let a= X¡>e¿¡ À&& and let n=^cec K- If
Xe^O, then \~lza=z; if X, = 0 and U9¿0, then a~lda = z where dEC is

such that Xd = 0; if Xe=/i = 0, then either Xc^O for some cEC, in

which case ( — \c)~1ca = z, or else Xc = 0 for all cEC, in which case

a = \zz and thus \^1a = z. From this it follows that Kz is the shelter of

(0) and that Aa = Ka+Kz for all nonzero a£ttl; thus m is not a

finitely generated ideal.

We may characterize those sheltered commutative rings with

identity in which the annihilator of the shelter of (0) is nilpotent (such

as the ring of the preceding example) as follows:

Theorem 8. Let A be a commutative ring with identity. Then A has a

nilpotent maximal ideal m whose annihilator $is a principal ideal if and

only if A is a sheltered ring and there exists an integer n such that the

product of any sequence of n zero-divisors is zero.

Proof. The condition is sufficient by Theorem 6; we need only let

m be the annihilator of the shelter of (0).

Necessity. Let m"= (0). Clearly 8^(0). We may regard 8 as a one-

dimensional vector space over A/m since 8 is principal. Since any

ideal of A contained in 8 is a subspace of the (^4/irt)-vector space 8, we

conclude that 8 is a minimal ideal. Let a be a nonzero element of A,

and let r E [0, n -1 ] be such that am' j¿ (0) but amr+1 = (0) ; let xEmr

be such that ax9¿0; then axm= (0), soax£8. Thus Aar\$9¿(0), so as

8 is minimal, Aa~^8. Thus 8 is the shelter of (0). Consequently by

Theorem 6, m is the set of all zero-divisors, so the product of any n

zero-divisors is zero.

A question suggested by 3° of Theorem 5 is: When is a commuta-

tive ring A with identity that admits no proper ideal topology iso-

morphic to the cartesian product of finitely many sheltered rings? It

follows from Theorem 6 that a necessary condition for A to be iso-
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morphic to the cartesian product of finitely many sheltered rings is

that the annihilator of every maximal ideal of A be a principal ideal.

This condition is also sufficient if A is noetherian (Theorem 10).

Theorem 9. Let A be a commutative ring with identity whose radical

is nilpotent. Then A is isomorphic to the cartesian product of finitely

many local sheltered rings if and only if A has only finitely many maxi-

mal ideals, and the annihilator of each maximal ideal is principal.

Proof. Sufficiency. Let nti, • • • , m„ be the maximal ideals of A-

The radical r of A is mi • ■ • m», so (0) = r* = nrï • • • m* = m\r\ ■ ■ ■

rimj for some k. Let Ai —A/va*, \¿i¿n, and let^>,- be the canonical

epimorphism from A onto A,-. Clearly A,- is a local ring whose maximal

ideal is nilpotent, and A is canonically isomorphic toU?=i^4< [5,

Theorem 32, p. 178]. By Theorem 8, it therefore suffices to prove that

Ann <£<(m») is a principal ideal of Ai. For this, we need only show that

4>i(Ann m¿)=Ann <£¿(m¿), since Ann m¡ is principal by hypothesis.

Clearly </>i(Ann trw)ÇAnn <£j(mt). Conversely, let 0,(x)GAnn 0j(mt).

Then x = y+z where yGnt* and zGIXv» mJ [Si Theorem 31, p. 177],

whence <bi(x) =</>,(z) ; as ¡emiCZmf, zmiQxm.i+ymiQm*, so zrrtjÇImf

OIL** m*=II"-i m*=(0); thus tf>¿(x) =<£¿(z)G0<(Ann m,).

Theorem 10. Let A be a commutative noetherian ring that admits no

proper ideal topology. Then A is isomorphic to the cartesian product of

finitely many sheltered rings if and only if the annihilator of each maxi-

mal ideal of A is principal.

Proof. By 4° of Theorem 7, A has only finitely many maximal

ideals and its radical is nilpotent. The condition is therefore sufficient

by Theorem 9.
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