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SHELTERED MODULES AND RINGS!
SETH WARNER

ABsTtrACT. The problem of determining when a module (ring)
admits an indiscrete, Hausdorff linear (ideal) topology is discussed
in terms of sheltered modules (rings).

Our purpose here is simply to point out the relevance of the notion
of sheltered submodule (ideal), introduced by Leptin [4, p. 245], to
the problem of determining when a module (ring) admits a proper
linear (ideal) topology, recently discussed by Hochster [3]. The
topology of a topological module is /inear if the open submodules form
a fundamental system of neighborhoods of zero; a linear topology is
proper if it is Hausdorff but not discrete. Similarly, the topology of a
ring is an ¢deal topology if the open ideals form a fundamental system
of neighborhoods of zero; an ideal topology is proper if it is Hausdorff
but not discrete.

A proper submodule U of a (not necessarily unitary) module E is
sheltered [4, p. 245], [2, Exercise 18, p. 110] if the set of submodules of
E strictly containing U has a smallest member S, called the shelter of
U. A module E is a sheltered module if (0) is a sheltered submodule of
E. If Uis a proper submodule of E, then E/U is a sheltered module if
and only if U is a sheltered submodule of E. A sheltered module
clearly admits no proper linear topology; one of our purposes is to
determine the relationship between modules admitting no proper
linear topology and sheltered modules.

The definition suggests that a sheltered submodule is in some sense
large. Indeed, a maximal submodule is clearly sheltered; in a vector
space the sheltered subspaces are precisely those of codimension 1;
more generally, the sheltered submodules of a semisimple module are
precisely the maximal ones by [1, Theorem 1, p. 32]. In general, if U
is a submodule and if x& U, then clearly U is a sheltered submodule
and x belongs to its shelter if and only if U is maximal in the set of all
submodules not containing x, in which case its shelter is the sub-
module generated by U and x. Consequently by Zorn's lemma, every
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submodule is the intersection of sheltered submodules [2, Exercise
18(a), p. 110]. Therefore, the filter base generated by all sheltered
submodules is a fundamental system of neighborhoods for a Hausdorff
linear topology; consequently, if E admits no proper linear topology,
(0) is the intersection of finitely many sheltered submodules.

THEOREM 1. Let E be a nonzero module. The following statements are
equivalent:

1°. E admits no proper linear topology.

2°. There exist sheltered submodules U,, - - -, U, of E such that
un - - ﬂU,.=(0)

3°. E s isomorphic to a submodule of the cartesian product of finitely
many sheltered modules.

Proor. We have just seen that 1° implies 2°. If 2° holds, E is
isomorphic to a submodule of [[7-, (E/Us), so 3° holds. If a module
admits no proper linear topology, neither does any submodule (for
otherwise the filter of neighborhoods of zero of the submodule would
be a fundamental system of neighborhoods of zero for a proper linear
topology on the module). As a sheltered module admits no proper
linear topology, to show that 3° implies 1° it suffices to show that the
cartesian product of modules admitting no proper linear topology
also admits no proper linear topology; a proof of this fact is a simpli-
fication of the proof of the following theorem, which in turn is essen-
tially the proof of [3, Theorem 2].

THEOREM 2. A subdirect sum of finitely many rings admitting no
proper ideal topology also admits no proper ideal topology.

Proor. If A is a subdirect sum of A4y, - - -, 4, and if 7 is the
canonical projection from]J7_; 4;onto] [7Z1 4, then 4 is a subdirect
sum of 7(4) and A4,. Hence by induction it suffices to consider the
case n=2. If Vis an ideal of 4, then V= {xEAlt(x, 0)E V} is an
ideal of 4, for if aE A, and x & V3, then there exists y& A4, such that
(a, y) €A, whence (ax, 0) = (a, y)(x, 0)E V and similarly (xa, 0)EV,
and thus ax, xa € V. The proof now proceeds like the first half of the
proof of [3, Theorem 2].

An artinian module E admits no proper linear topology, since for
any linear topology on E there is a minimal open submodule. The
prominence of sheltered submodules in an artinian module is indicated
in the following theorem.

THEOREM 3. A unitary module E is artinian if and only if each prop-
er submodule of E is the intersection of finitely many sheltered sub-
modules.
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Proor. If M, U, and S are submodules such that MC UCSS, then
clearly U is a sheltered submodule with shelter .S if and only if U/M
is a sheltered submodule of E/M with shelter S/M. The condition is
therefore necessary by Theorem 1, since a quotient module of an
artinian module is artinian. Conversely, if M is the intersection of a
decreasing sequence of submodules, the condition implies that E/M
admits no proper linear topology and consequently that the sequence
is stationary.

THEOREM 4. If E is a module, every proper submodule of E 1is
sheltered if and only if the set of all submodules of E is well ordered by
inclusion.

PROOF. Necessity. Let 9 be a nonempty set of submodules, and let
N=NN { M:MeEm}. If N9, then every member of 91 properly con-
tains NV, so N is proper and every member of 91 contains the shelter S
of N, whence NDSDN, a contradiction. Thus every nonempty set of
submodules contains a smallest member.

Sufficiency. 1f M is a proper submodule, the smallest of the sub-
modules strictly containing N is clearly the shelter of M.

If 4 is a ring, then the ideals of 4 are precisely the submodules of 4,
regarded as a module over the subring of endomorphisms of the addi-
tive group of A generated by right and left multiplications. Applying
the general definition to this situation, we call an ideal u of 4 sheltered
if the set of all ideals strictly containing u has a smallest member 8,
called the shelter of u; A is a sheltered ring if (0) is a sheltered ideal of
A. Clearly a sheltered ring admits no proper ideal topology.

THEOREM 5. Let A be a nonzero ring. The following statements are
equivalent:

1°. A admits no proper ideal topology.

2°. There extist sheltered ideals 1y, - - - , W, of A such that M - - - N
1, = (0).

3°. A isisomorphic to a subdirect sum of finitely many sheltered rings.

ProOF. By Theorem 1, 1° implies 2° and 2° implies 3°. By Theorem
2, 3° implies 1°.

In [3, Theorem 1] Hochster characterized those commutative rings
with identity that admit no proper ideal topology in terms of the
annihilators of their maximal ideals. We shall determine those maxi-
mal ideals having nonzero annihilators and their annihilators in
terms of a minimal family of sheltered ideals whose intersection is (0)
and their shelters, first for sheltered rings and then in general; this
will make evident once again the necessity of the conditions given in
[3, Theorem 1].
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THEOREM 6. Let A be a sheltered commutative ring with identity, let 8
be the shelter of (0), and let m=Ann 8. Then m is a maximal ideal and
consists of all zero-divisors of A, and 8=Ann m; in particular, Ann m s
a principal ideal. If A is noetherian, then A is artinian and m s its only
maximal ideal.

Proor. Clearly m is a proper ideal. To show that m is maximal, let
aEm. Then there exists s&8 such that as#0, so AasMg=(0),
whence Aas=8. In particular, there exists &4 such that bas=s, so
(ba—1)s=0; the annihilator of ba —1 is, therefore, a nonzero ideal, so
it contains 8, and consequently ba —1&Ann 8=m. Thus 4/m is a
field, so m is maximal. By definition, every element of m is a zero-
divisor. Conversely, if ¢ is a zero-divisor, then its annihilator is a non-
zero ideal and hence contains 8, so c&cAnn §=m.

We may regard Ann m as a vector space over 4 /m; the subspaces of
the (4/m)-vector space Ann m are precisely the ideals of 4 contained
in Ann m; therefore Ann m has a smallest nonzero subspace 8, so
Ann m=8. The final assertion follows from the proof of [3, Theorem
4]. Alternatively, we may observe that N,.; m*=(0) by Krull's
theorem [5, Theorem 12, p. 216], whence m”= (0) for some #>1 as 4
admits no proper ideal topology; therefore as 4/m is a field, 4 is
artinian by [l, Proposition 12, p. 71]; as m is nilpotent, m is contained
in the radical of 4, so m is the only maximal ideal of 4.

THEOREM 7. Let A be a commutative ring with identity that admits no
proper ideal topology. Let wy, - - -, U, be sheltered ideals of A such that
"1 u;= (0) but for each i< [1, n], w; LN s u;. For each i€ [1, n] let 8,
be the shelter of 1, let m;= (1;:8,), let K(3) = {FE[1, n] im;=m;}, and
let ks be the number of integers in K (3).

1°. The maximal ideals of A having nonzero annihilators are precisely
the ideals my, - - + , My, and Uiy my 1s the set of all zero-divisors of A.
2°. Ann m;= (Njexw 8) NV (Njerey Uj), @ nonzero ideal generated by
not more than k; elements.

3°. For each nonzero a €A there exists i€ [1, n] such that AaN
Ann m;(0).

4°. If A 1s noetherian, then A 1is artinian and my, - - -, M, are its
only maximal ideals.

ProoF. Let ¢; be the canonical epimorphism from 4 onto the
sheltered ring A /u;. Clearly ¢;(m;) =Ann ¢(8;), so, by Theorem 6,
¢:(m;) is a maximal ideal of 4/u; and its annihilator is ¢;(8;). As
m;2Du;, therefore, m; is a maximal ideal of 4. Let xEAnn m;. Then
¢;(x) EAnn ¢;(m;) for all jE[1, n]; if JEK (), then ¢,(x) E¢;(8;) by
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Theorem 6, whence xE8;; if jEK(7), then m;+m;=4, so ¢;(m,)
= A /u; and hence has a zero annihilator, whence x&u,. Thus Annm;
g(n,’ex(;) Qj)n(njex(;) l.lj). COHVCI‘SC]y, if x€6,~ where ]EK(’Z),
then m;x=mxCu;; hence if x&(Nexe) 8)N(Njexe) 1;), then mx
_C_n:=1 U = (0), SO X E Annm;. Therefore Ann m; = (njEK(;') 5,’)
N(Njex@ ;). This ideal is nonzero, since 8;MN (Njei ;) #=(0); indeed,
as WiEN i Wy, Wit Njmi U;285; let sES;, séEu;; then s=u-+v where
wE; and ¥EN jei 1, 50 v=5—uE8;N\(Njx: ;) and 2520. By [5, Re-
mark, p. 215], to complete the proof of 1° it suffices to show that
every zero-divisor @ of A belongs to some m;. Let ax =0 where x70;
then x & u; for some 1, so ¢;(a) is a zero-divisor of 4 /u;, whence ¢:(a)
E¢:(m;) by Theorem 6 and thus ¢ & m;.

To complete the proof of 2°, we note that the canonical mappings
of the (4 /m;)-vector spaces

Ann m; =( n éj)f\( n 11j>
JEK (4) JEK (1)

-»( n 6,)/( n w)—» II &/
JEK (i) JEK (1) JEK (3)

are monomorphisms; by Theorem 6, 8;/u; has dimension 1 over
A/m;for each jE K (7), so Ann m; has dimension =k;; thus 2° holds.

Statement 3° follows from 1° and [3, Theorem 1]; we give a proof
not involving Zorn's lemma. First, if 550, then 45M\8,7 (0); indeed,
the assertion is clear if b&u;; otherwise 4b+u;28;, so if sE8; but
s€u;, then xb4u =s for some u Eu,, whence xb=s—u, a nonzero ele-
ment of 8;. Therefore if a0, there exists x; &4 such that x;a €8; and
%16 7#0; hence there exists x;E 4 such that x;(x1a) €8N8, and x2(x1a)
#0, etc.; in sum, 4e¢M(N%-; 8:) #(0). To prove 3°, therefore, we may
assume that a EN%_; 8;. If e Ann my, then there exists y;Emy such
that y1a 70 and y,a €1, as aE8;; if yia€EAnn m,, there exists y.Em,
such that y:(y1¢) #0 and y:(y1a) EuMN1y as y1 ¢ E8,; continuing in this
way, we arrive at <z such that y, - - - y0 #0 and y, - - - Y2 E
Annm,y,, for otherwise y.y,—1 + + - y1a#0 buty, - - - ya€u,MN - - -
My = (0), a contradiction.

Again, 4° follows from 1° and the proof of [3, Theorem 4]; it also
follows from Theorem 6 since every maximal ideal m must contain
some U; (otherwise m—4u;=4 for all 7, so m=m+N%-; u;=4, a con-
tradiction), so if 4 is noetherian, then m,, - - -, m, are the only
maximal ideals by Theorem 6. Also by Theorem 6, each ¢.(m;) is
nilpotent, so the radical of 4 is also as N}_; u;=(0), and therefore 4
is artinian,
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In [2, Exercise 17(b), p. 11] it is incorrectly asserted that a
module admitting no proper linear topology is artinian. Leptin [4, p.
248] gave an example of a nonartinian, sheltered module. Here is an
example of a commutative, nonnoetherian, sheltered ring. Let B be a
basis of an infinite-dimensional vector space 4 over a field K, lete, 2
be two elements of B, and let C=B— {e¢, z}. To define a multiplica-
tion on 4 we indicate the product of elements of B as follows: eb=be
=p for all b&EB; for all ¢, dEC, cd=dc=z if c*d and ¢2=0; cz=32¢c
=3g2=0 for all c&€C. Clearly 4 is a commutative ring with identity e,
and the subspace m of codimension 1 generated by CU {z} is a maxi-
mal ideal satisfying m?®=(0). Consequently, m is contained in the
radical of 4, so m is the only maximal ideal of 4, i.e., 4 is a local ring.
To show that 2E4a if a0, let a =D _scp Mb and let p= D cec A,. If
A.#0, then X\, 'za =z; if \,=0 and u>0, then u~'da =2 where dEC is
such that Ng=0; if A,=u=0, then either A0 for some ¢&C(, in
which case (—\.)lca=gz, or else \,=0 for all ¢&C, in which case
a =Xz and thus A\ 'a=2z. From this it follows that Kz is the shelter of
(0) and that Aa=Ka+ Kz for all nonzero a&m; thus m is not a
finitely generated ideal.

We may characterize those sheltered commutative rings with
identity in which the annihilator of the shelter of (0) is nilpotent (such
as the ring of the preceding example) as follows:

THEOREM 8. Let A be a commutative ring with identity. Then A has a
nilpotent maximal ideal m whose annihilator 8 is a principal ideal if and
only if A is a sheltered ring and there exists an integer n such that the
product of any sequence of n zero-divisors is zero.

PRroOF. The condition is sufficient by Theorem 6; we need only let
m be the annihilator of the shelter of (0).

Necessity. Let m»= (0). Clearly 8 (0). We may regard 8 as a one-
dimensional vector space over 4/m since 8 is principal. Since any
ideal of 4 contained in 8 is a subspace of the (4 /m)-vector space 8, we
conclude that 8 is a minimal ideal. Let @ be a nonzero element of 4,
and let & [0, n—1] be such that am”> (0) but am+1=(0); let xEm~
be such that ax#0; then exm = (0), so ax&8. Thus 4aM8s=(0), so as
8 is minimal, 4¢28. Thus 8 is the shelter of (0). Consequently by
Theorem 6, m is the set of all zero-divisors, so the product of any »
zero-divisors is zero.

A question suggested by 3° of Theorem 5 is: When is a commuta-
tive ring 4 with identity that admits no proper ideal topology iso-
morphic to the cartesian product of finitely many sheltered rings? It
follows from Theorem 6 that a necessary condition for 4 to be iso-
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morphic to the cartesian product of finitely many sheltered rings is
that the annihilator of every maximal ideal of 4 be a principal ideal.
This condition is also sufficient if 4 is noetherian (Theorem 10).

THEOREM 9. Let A be a commutative ring with identity whose radical
is nilpotent. Then A is isomorphic to the cartesian product of finitely
many local sheltered rings if and only if A has only finitely many maxi-
mal ideals, and the annihilator of each maximal ideal is principal.

ProoF. Sufficiency. Let my, - - -, m, be the maximal ideals of 4-
The radical t of 4 is my - - - My, so (0)=th=m} - - - mE=miN - - .
Nk for some k. Let A;=A4/m}, 1Si=<n, and let ¢; be the canonical
epimorphism from 4 onto 4. Clearly 4:is a local ring whose maximal
ideal is nilpotent, and 4 is canonically isomorphic to HZ‘_I A; [s,
Theorem 32, p. 178]. By Theorem 8, it therefore suffices to prove that
Ann ¢;(m;) is a principal ideal of 4;. For this, we need only show that
¢:(Ann m;) =Ann ¢;(m;), since Ann m; is principal by hypothesis.
Clearly ¢:(Ann m;) CAnn ¢;(m;). Conversely, let ¢:(x) EAnn ¢;(m,).
Then x =y+2 where y&m! and 2&] [ ;s mf [5, Theorem 31, p. 177],
whence ¢i(x) =¢:(2); as xm;Cm}, zm;Cam;+ym;Sm;, so zm;Sm;
N[ Liw: mf =] 15-1 mf=(0); thus ¢:(x) =¢:(2) E¢s(Ann my).

THEOREM 10. Let A be a commultative noetherian ring that admits no
proper ideal topology. Then A is isomorphic to the cartesian product of
finitely many sheltered rings if and only if the annihilator of each maxi-
mal ideal of A is principal.

Proor. By 4° of Theorem 7, A has only finitely many maximal
ideals and its radical is nilpotent. The condition is therefore sufficient
by Theorem 9.
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