A CONVERGENCE QUESTION IN HP

STEPHEN SCHEINBERG1

ABSTRACT. Let $\phi \in H^p$ (unit disc), $0 , and let <math>\phi_r(z) = \phi(rz)$, r < 1. If ϕ contains a nontrivial inner factor, it is known that ϕ/ϕ_r is unbounded in H^p -norm. We prove that if ϕ is analytic on the closed disc and has no zeros on the open disc, then $\phi/\phi_r \to 1$ in H^p , as $r \to 1$. The same conclusion follows if $1/\phi \in H^\infty$. We construct an outer function ϕ which is continuous on the closed disc, analytic for $z \ne 1$, and such that ϕ/ϕ_r is unbounded in every H^p .

The following question, originating with G. Lumer, I believe, was put to me by L. Zalcman: if $\phi \in H^2$ and is outer, does it follow that $\phi(z)/\phi(rz) \to 1$ in H^2 as $r \to 1^{-}$? This note provides the following answers to this question. It will be clear that the same results hold in H^p , for 0 .

THEOREM. (a) If it is also true that $|\phi| \ge \delta > 0$ on $\{|z| < 1\}$, then the answer is "yes".

- (b) If ϕ is actually analytic on $\{|z| \leq 1\}$, then the answer is "yes."
- (c) There is a ϕ which is continuous on $\{|z| \le 1\}$, is analytic on $\{|z| \le 1, z \ne 1\}$, is outer and has

$$\limsup_{r\to 1} \int \left| \frac{\phi(e^{i\theta})}{\phi(re^{i\theta})} \right|^{\epsilon} d\theta = + \infty,$$

for any $\epsilon > 0$. Hence, in particular, $\phi(e^{i\theta})/\phi(re^{i\theta}) \rightarrow 1$ in L^2 .

The positive results (a) and (b) and the negative result (c) provide natural limitations on each other and are in a certain sense best possible. The basic notions and facts of H^p -theory can be found in Hoffman's book. The proofs of (a), (b), and (c) involve computations;

Received by the editors May 21, 1970.

AMS 1969 subject classifications, Primary 3067, 3085.

Key words and phrases. Inner function, outer function.

¹ Preparation of this paper was supported in part by NSF GP 11911.

² As the referee points out, part (c) of the Theorem answers in the negative the following natural question in prediction theory. Consider the classical prediction problem for one-parameter stationary processes and obtain the formal expression for the predictor from the Taylor coefficients (at 0) of the inverse of the generating function. Is this formal expression necessarily Abel-summable?

³ Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 24 #A2844.

(a) and (b) are straightforward; (c) involves manipulations of the Poisson kernel, and the example is motivated by the inner function $\exp[(z+1)/(z-1)]$, for which the convergence in question is well known to fail. This last fact is the reason for the hypothesis that ϕ be outer.

REMARK.

$$0 \le \left| 1 - \frac{\phi(e^{i\theta})}{\phi(re^{i\theta})} \right|^2 = 1 - 2 \operatorname{Re} \frac{\phi(e^{i\theta})}{\phi(re^{i\theta})} + \left| \frac{\phi(e^{i\theta})}{\phi(re^{i\theta})} \right|^2.$$

 $\operatorname{Re}(\phi(e^{i\theta})/\phi(re^{i\theta}))$ are the boundary values of a harmonic function which is 1 at the origin. Therefore,

$$0 \leq \int \left| 1 - \frac{\phi(e^{i\theta})}{\phi(re^{i\theta})} \right|^2 \frac{d\theta}{2\pi} = 1 - 2 + \int \left| \frac{\phi(e^{i\theta})}{\phi(re^{i\theta})} \right|^2 \frac{d\theta}{2\pi}.$$

Thus, the original question is equivalent to

"does
$$\int_{-\pi}^{\pi} \left| \frac{\phi(e^{i\theta})}{\phi(re^{i\theta})} \right|^2 \frac{d\theta}{2\pi} \to 1?$$
"

When "2" is replaced by "p", the same equivalence holds. It is a standard fact of Lebesgue theory that if $f_r \rightarrow f$, a.e., and $\int |f_r|^p \rightarrow \int |f|^p$, then $f_r \rightarrow f$ in L^p .

PROOFS. (a) If $|\phi| \ge \delta > 0$, then $1/\phi \in H^{\infty}$ and since $\phi(re^{i\theta}) \rightarrow \phi(e^{i\theta})$, a.e., we have $\phi(e^{i\theta})/\phi(re^{i\theta}) \rightarrow 1$, a.e., and dominated by the L^2 -function const $|\phi(e^{i\theta})|$. The same proof works in H^p .

(b) If ϕ is analytic on $|z| \leq 1$ and is outer, it has the form $\phi(z) = (z - e^{i\theta_1})^{n_1} \cdot \cdot \cdot (z - e^{i\theta_2})^{n_2} \psi(z)$, where $\theta_1, \cdot \cdot \cdot$ are distinct in $0 \leq \theta < 2\pi$ and both ψ and $1/\psi$ are analytic for $|z| \leq 1$.

It is sufficient to show $|(1-e^{i\theta})/(1-re^{i\theta})|^m \to 1$ in $L^2(d\theta)$, for each $m \ge 1$. For if this is the case, then $|\phi(e^{i\theta})/\phi(re^{i\theta})| = \text{product of terms}$, each of which converges to 1 in L^2 and pointwise, a.e. On any small interval of θ 's, at most one term is unbounded as $r \to 1$. Thus, we will be done by the Remark above. I thank D. Neu for the following argument, which considerably simplifies the proof. Since

$$\left|\frac{1-e^{i\theta}}{1-re^{i\theta}}\right| \leq 2 \quad \text{and} \quad \frac{1-e^{i\theta}}{1-re^{i\theta}} \to 1, \quad \text{a.e.},$$

the Lebesgue bounded convergence theorem gives the desired result.

(c) The motivation is the inner function $e^{(z+1)/(z-1)}$ (as mentioned), and the example is constructed and verified from very elementary properties of the Poisson kernel

$$P(r,\theta) = \frac{1-r^2}{1-2r\cos\theta+r^2} = \operatorname{Re}\left(\frac{1+re^{i\theta}}{1-re^{i\theta}}\right).$$

This well-known fact is the basis for the construction:

$$\int_{-\delta}^{\delta} P(\mathbf{r}, \theta)^{1+\epsilon} d\theta \to \infty \quad \text{as } \mathbf{r} \to 1^{-}, \quad \text{for any } \epsilon > 0, \, \delta > 0.$$

(Let $f(\theta) = n^{(\epsilon/(1+\epsilon))}$ for $-1/2n < \theta < 1/2n$ and 0 otherwise; then

$$\int_{-\delta}^{\delta} P(r, \theta) f(\theta) d\theta \to n^{(\epsilon/(1+\epsilon))} \quad \text{as } r \to 1^{-}.$$

However,

$$\int Pf \leqq \left(\int P^{1+\epsilon}\right)^{(1/(1+\epsilon))} \left(\int f^{((1+\epsilon)/\epsilon)}\right)^{(\epsilon/(1+\epsilon))} = \left(\int P^{1+\epsilon}\right)^{(1/(1+\epsilon))}.$$

Thus

$$n^{(\epsilon/(1+\epsilon))} \leq \lim\inf \bigg(\int P^{1+\epsilon}\bigg)^{(1/(1+\epsilon))} \text{ or } n^{\epsilon} \leq \lim\inf \bigg(\int P^{1+\epsilon}\bigg).$$

This, for all n, implies $\lim \inf (\int P^{1+\epsilon}) = + \infty$, as desired.)

In particular, $\int_{-\delta}^{\delta} [P(r, \theta)]^2 d\theta \to \infty$ and hence $\int_{-\delta}^{\delta} \exp \epsilon P(r, \theta) d\theta \to \infty$ as $r \to 1^-$, for any $\epsilon > 0$, $\delta > 0$.

The function ϕ will be $\phi(z) = \prod_{n=1}^{\infty} \exp \epsilon_n ((r_n z + 1)/(r_n z - 1))$ where $\epsilon_n > 0$ and $\sum \epsilon_n = 1$ and $r_n \to 1^-$ (to be chosen).

Observe that any such ϕ is analytic on $\{|z| \le 1, z \ne 1\}$, continuous on $\{|z| \le 1\}$ and outer. Indeed, since $(r_nz+1)/(r_nz-1) \rightarrow (z+1)/(z-1)$ uniformly (as $n \to \infty$) for all z with $|z-1| \ge \delta > 0$ (for any δ) and $\sum \epsilon_n < \infty$, ϕ is analytic on the complement of $\{1/r_1, 1/r_2, \cdots, 1\}$. To prove continuity at z=1, first observe that $\log |\phi(re^{i\theta})| = -\sum \epsilon_n P(rr_n, \theta)$, so that $\log |\phi|$ is the Poisson integral of the function $-\sum \epsilon_n P(r_n, \theta)$. This proves ϕ is outer. We will be finished if we show $\sum \epsilon_n P(r_n, \theta)$ is continuous from $-\pi \le \theta \le \pi$ to $[0, \infty]$. Each $P(r_n, \theta)$ is even and is monotonic on either side of $\theta = 0$; the same holds for the sum, since $\epsilon_n > 0$. Since $\int \sum d\theta/2\pi = 1$, \sum cannot be identically $+\infty$ in any interval; so \sum converges at each θ , except possibly $\theta = 0$. Monotonicity gives uniform convergence for $|\theta| \ge \delta > 0$, any δ . Monotonicity and evenness imply that as $\theta \to 0$, \sum approaches either some finite limit or $+\infty$, and it is easy to see that this limit is $\sum (0)$. In any case, the product converges to ϕ uniformly on $|z| \le 1$.

Now select any $\epsilon_n > 0$, $\sum \epsilon_n = 1$ (say, $\epsilon_n = 2^{-n}$). Inductively, we will select $\rho_1 < r_1 < \rho_2 < r_2 < \cdots$ and $I_1 \supseteq I_2 \supseteq \cdots$ open intervals containing 0 so that $\rho_n \to 1$, $I_n \downarrow \{0\}$ and the $\phi(z)$ defined above for $\{(\epsilon_n, r_n)\}$ has

$$\int_{-\pi}^{\pi} \left| \frac{\phi(e^{i\theta})}{\phi(\rho_n e^{i\theta})} \right|^{(1/n)} \frac{d\theta}{2\pi} > n.$$

(The purpose of I_n will become apparent.)

Inductively, we may assume ρ_k , r_k , I_k are defined for all k < n. (The case n = 1 is vacuous.) Let $a_n = \min_{\theta} \exp - \sum_{k < n} \epsilon_k P(r_k, \theta)$. Then $0 < a_n \le 1$ ($a_1 = 1$ since the empty sum = 0). For convenience, let $I_0 = (-\pi, \pi)$.

Since $\int \exp \epsilon P(r, \theta) d\theta/2\pi \to \infty$ as $r \to 1$, no matter what $\epsilon > 0$ is, let ρ_n be chosen between r_{n-1} and 1 and so close to 1 that

$$\int_{I_{n-1}} \exp \frac{1}{n} \epsilon_n P(\rho_n, \theta) \frac{d\theta}{2\pi} > \frac{(n+1)e}{a_n} \cdot$$

Now choose $I_n \subseteq I_{n-1}$ so small that $\int_{I_{n-1}-I_n}$ is still $> (n+\frac{1}{2})e/a_n$. Now we can choose r_n between ρ_n and 1 and so close to 1 that $P(r_n, \theta) < 1$ outside I_n , since $P(r, \theta) \to 0$ uniformly outside I_n , and

$$\int_{I_{n-1}-I_n} \exp \frac{1}{n} \epsilon_n P(r_n \rho_n, \theta) \frac{d\theta}{2\pi} > \frac{ne}{a_n},$$

since $P(r\rho, \theta) \rightarrow P(\rho, \theta)$ uniformly as $r \rightarrow 1$.

This inductive step defines ρ_n , r_n , I_n for all $n \ge 1$ and we put $\phi(z) = \prod_{n=1}^{\infty} \exp \epsilon_n(r_n z + 1)/(r_n z - 1)$. It remains to show

$$\int_{-\pi}^{\pi} \left| \frac{\phi(e^{i\theta})}{\phi(\rho_n e^{i\theta})} \right|^{(1/n)} \frac{d\theta}{2\pi} \ge n.$$

$$\left| \frac{\phi(e^{i\theta})}{\phi(\rho_n e^{i\theta})} \right|^{(1/n)} = \exp \frac{1}{n} \sum_{k=1}^{\infty} \epsilon_k [P(r_k \rho_k, \theta) - P(r_k, \theta)]$$

$$\ge \exp \left(\frac{1}{n} \sum_{k=1}^{n-1} \right) \cdot \exp \left(\frac{1}{n} \epsilon_n P(r_k \rho_k, \theta) \right) \cdot \exp \left(-\frac{1}{n} \sum_{k=1}^{\infty} \epsilon_k P(r_k, \theta) \right),$$

discarding all the positive exponents $P(r_k\rho_k, \theta)$ for $k \ge n+1$. Examining these three factors on $I_{n-1}-I_n$ we find: The first $\ge a_n^{(1/n)} \ge a_n$, by discarding the $P(r_k\rho_n, \theta)$ from the exponent. The third $\ge \exp(-(1/n)\sum_{n=0}^{\infty}\epsilon_k\cdot 1) > \exp(-1/n) \ge e^{-1}$, since $I_k \supset I_{k+1} \supset \cdots$ and $P(r_k, \theta) < 1$ outside I_k . The second has $\int_{I_{n-1}-I_n} \cdots d\theta/2\pi > ne/a_n$ by choice. Therefore,

$$\int_{-\pi}^{\pi} \left| \frac{\phi(e^{i\theta})}{\phi(\rho_n e^{i\theta})} \right|^{(1/n)} \frac{d\theta}{2\pi} > \int_{I_{n-1}-I_n} \cdots \frac{d\theta}{2\pi} > a_n \cdot \frac{ne}{a_n} \cdot e^{-1} = n,$$

as claimed.

It is clear that

$$\lim_{n} \int \left| \frac{\phi(e^{i\theta})}{\phi(\rho_{n}e^{i\theta})} \right|^{\epsilon} d\theta = + \infty,$$

for any $\epsilon > 0$.

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305