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A CONVERGENCE QUESTION IN Hr
STEPHEN SCHEINBERG!

ABSTRACT. Let ¢ EHP (unit disc), 0 <p < ». and let ¢,(2) =¢(r2),
r <1. If ¢ contains a nontrivial inner factor, it is known that ¢ /¢, is
unbounded in H?-norm. We prove that if ¢ is analytic on the closed
disc and has no zeros on the open disc, then ¢ /¢,—1 in H?, as r—1.
The same conclusion follows if 1/¢ EH®. We construct an outer
function ¢ which is continuous on the closed disc, analytic for
z7#1, and such that ¢ /¢, is unbounded in every HP.

The following question, originating with G. Lumer, I believe, was
put to me by L. Zalcman: if $& H? and is outer, does it follow that
¢(2)/p(rz)—1 in H? as r—1-? This note provides the following
answers to this question.2 It will be clear that the same results hold in
Hr for0<p< .

THEOREM. (a) If it is also true that |$| 28>0 on {|z| <1}, then the
answer is “yes”.

(b) If ¢ is actually analytic on | | z| <1 } , then the answer is “yes.”

(c) There is a ¢ which is continuous on | lzI <1}, is analytic on
{|2| =1,251},is outer and has

. f o(e?)
lim sup -

r—1 ¢(76'0)

for any €> 0. Hence, in particular, p(e®) /d(re®®)+1in L2

df = + o,

The positive results (a) and (b) and the negative result (c) provide
natural limitations on each other and are in a certain sense best
possible. The basic notions and facts of H?-theory can be found in
Hoffman’s book.? The proofs of (a), (b), and (c) involve computations;
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1 Preparation of this paper was supported in part by NSF GP 11911.

2 As the referee points out, part (c) of the Theorem answers in the negative the
following natural question in prediction theory. Consider the classical prediction
problem for one-parameter stationary processes and obtain the formal expression for
the predictor from the Taylor coefficients (at 0) of the inverse of the generating func-
tion. Is this formal expression necessarily Abel-summable?

3 Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series
in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962, MR 24 #A2844.
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(@) and (b) are straightforward; (c) involves manipulations of
the Poisson kernel, and the example is motivated by the inner func-
tion exp [(z+1)/(z—1) ], for which the convergence in question is well
known to fail. This last fact is the reason for the hypothesis that ¢ be
outer.

REMARK.

aG N O C I #(e) |*
$(re?) o(re?) | p(re®)|

Re(¢p(e®) /p(re®)) are the boundary values of a harmonic function
which is 1 at the origin. Therefore,

0§ll—

@) 12 4p ) 12 4o
ok [li- BBy [l
o(re®) | 2 o(re®) | 2
Thus, the original question is equivalent to
T eW 2 de
“doesf a ,) — —1?”
—x| O(re®) | 2

When “2” is replaced by “p” ,the same equivalence holds. It is a
standard fact of Lebesgue theory that if f,—f, a.e., and [ | f,l [ l f | ?,
then f,—fin L».

ProoFs. (a) If |¢| 28>0, then 1/¢ € H= and since ¢(re®) —p(e®),
a.e., we have ¢(e?)/¢p(re®)—1, a.e., and dominated by the L2
function const ]qS(e"") I . The same proof works in H?.

(b) If ¢ is analytic on Iz] =1 and is outer, it has the form ¢(2)
=(z—e®)m . . . (z—e%)"f(z), where 6, - - - are distinct in 0Z6
< 2w and both ¢ and 1/y are analytic for I z| =1.

It is sufficient to show | (1—e®) /(1 —re®) | m—1 in L2(df), for each
m=1. For if this is the case, then |¢(e“) /¢(re®) | =product of terms,
each of which converges to 1 in L? and pointwise, a.e. On any small
interval of 0’s, at most one term is unbounded as r—1. Thus, we will
be done by the Remark above. I thank D. Neu for the following argu-
ment, which considerably simplifies the proof. Since

1 —e¥

—1

1 —e®
‘ <2 and

, a.e.,

1 — re® 1 — re®

the Lebesgue bounded convergence theorem gives the desired result.

(c) The motivation is the inner function e®*+1/¢=1 (35 mentioned),
and the example is constructed and verified from very elementary
properties of the Poisson kernel
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1_ 2 1 0
P(r, 0) = il Re( +re )

1—2rc050+r2_ 1 — re®

This well-known fact is the basis for the construction:

8
P(r,0)tdfd — o asr—1~, foranye > 0,6 >0.
-3

(Letf(0) =m0+ for —1/2n <0 <1/2n and 0 otherwise; then

s
P(r, 0)f(0)d0 — nc/0+)  asr—1-,

-

However,

(1/(1+¢)) (e/ (1+¢)) 1/(1+e))
fpf < (fPl+e) (ff((we)/e)) = (fPl+e> .

Thus

(/(1+e))
n(/0+) < lim inf< f P1+e) or n¢=<lim inf( f P“ﬂ).

This, for all #, implies lim inf (f P1*¢) = 4 «, as desired.)

In particular, %, [P(r, 8) ]2 d9— = and hence [?;exp eP(r,0) db
—wasr—1—, forany >0, §>0.

The function ¢ will be ¢(z) =] |, exp €. ((r.2+1)/(r.2—1)) where
&>0and Y ¢,=1and r,—1~ (to be chosen).

Observe that any such ¢ is analytic on { | zl =<1, z#1 } , continuous
on { ] z[ <1}andouter. Indeed, since (r,z2+1)/(r.z2—1)—(z+1)/(z—1)
uniformly (as n—«) for all z with | z—1 | =26>0 (for any 8) and
Y &< ®, ¢ is analytic on the complement of {1/, 1/rs, - - -, 1}.
To prove continuity at z=1, first observe that log |¢(re“’)| =
— Y € P(r74,0), so that log [¢| is the Poisson integral of the function
— Y P (7, 8). This proves ¢ is outer. We will be finished if we show
> €P(rn, 8) is continuous from —7w <8 =<r to [0, » ]. Each P(r,, 6)
is even and is monotonic on either side of § =0; the same holds for the
sum, since ¢, >0. Since [ dd/2r=1, Y, cannot be identically + «
in any interval; so Y, converges at each 6, except possibly §=0.
Monotonicity gives uniform convergence for IO| =6>0, any 6.
Monotonicity and evenness imply that as§—0, >, approaches either
some finite limit or 4 =, and it is easy to see that this limitis Y (0).
In any case, the product converges to ¢ uniformly on ]zl =1.
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Now select any €,>0, 2 e, =1 (say, &, =2-"). Inductively, we will
select p1 <7 <p:<7r:< - - -and ,DI,D - - - open intervals contain-
ing 0 so that p,—1, I, | {0} and the ¢(z) defined above for {(e,, 7) }

#(e”)

has
f —x ¢(Pne“)

(The purpose of I, will become apparent.)

Inductively, we may assume py, 7x, I are defined for all 2 <#n. (The
case n=1 is vacuous.) Let a,=miny exp — X icn &P(rx, 0). Then
0<a,=1 (a:1=1 since the empty sum=0). For convenience, let I,
=(—m,m).

Since [ exp eP(r, 0)d§/2r— o as r—1, no matter what ¢>0 is, let
pn be chosen between r,_; and 1 and so close to 1 that

1 de n + 1)e
f exp — €, P(pa, 0) — > S———l .
I n 2r

a/n) 49

o

> n.

an

n—-1

Now choose I,C I, so small that i, |1, is still >(n+1)e/a.. Now
we can choose 7, between p, and 1 and so close to 1 that P(r,, 0) <1
outside I,, since P(r,0)—0 uniformly outside I,,, and

1 do ne
f exp — enP(rapn, ) — > —>
In—l_In n 21!'

[
since P(rp,0)—P(p, 0) uniformly asr—1.
This inductive step defines p,, 7., I, for all =1 and we put ¢(z)
= II7 exp ea(ra24+1)/(raz—1). It remains to show
T 0 (1/n)
f o(e?) do >
—r| ¢(pae®) 27

n.

¢(ei0) (1/n) 1 =@
= exp — P(ripr, 0) — P(ri, 6
oo™ exp — kZ“l e[ P(ripr, 6) (%, 0)]
1 2! 1 12
= exp (— E)-exp (— € P(70pn, 0)) -exp (— — Z e P(rx, 0)),
n 1 n n 5

discarding all the positive exponents P(rpx, 0) for k=2n-+1. Ex-
amining these three factors on I,_;—I, we find: The first 24/ > a,,
by discarding the P(rip,, 0) from the exponent. The third
2exp(—(1/n) X7 &-1)>exp(—1/n) Ze™!, since 1DI1D - - - and
P(ri, 0) <1 outside I;. The second has [7, ,_1, - - - d8/2w >ne/a. by
choice. Therefore,
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T @(e®) | W™ db do ne
f — f =D — ¢ =1,

—=| ®(pne®) 2x Ty—1—To 2« an

asclaimed.
Itis clear that
”
lm f I ¢(e%) =+ o,
®(pne®)

foranye>0.
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