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ON A THEOREM OF MALCEV!
GERARD LALLEMENT

ABSTRACT. For any pair of distinct elements @, b in a finitely
generated abelian semigroup S, we indicate what are the homo-
morphisms ¢ of S onto a finite semigroup such that ¢(a) #=¢(b).
This improves a previous result of Malcev which states that the
considered semigroups are residually finite.

A semigroup S is residually finite if for any pair of distinct ele-
ments @, bES, a and b can be separated by a congruence of finite
index (i.e. there exists a congruence p on S such that S/p is finite and
such that the classes of @ and b are distinct). In 1958 A. I. Malcev
proved the following theorem: Any finitely generated abelian semi-
group is residually finite [6]. Malcev’s elegant proof is based on two
other results:

(1) Every finitely generated commutative algebra over a field of
characteristic 0 is isomorphic to an algebra of # X7 matrices over a
field of characteristic 0 [5].

(2) Every finitely generated group or semigroup of # X7 matrices
over a field of characteristic 0 is residually finite [4].

The theorem of (1) is not easily extendable to noncommutative
algebras. Furthermore in the proof of (2) Malcev used the Hilbert
basis theorem which allows one to establish the result without an ex-
plicit construction of a congruence separating two elements. For
possible extensions of Malcev’s theorem to nonabelian semigroups, it
is of interest to have an explicit description of congruences of finite
index separating two given elements.

A solution to this problem is provided by our Theorem 3. For
connections of residual finiteness with the problem of embedding a
semigroup in a compact semigroup the reader is referred to [1].

1. Notation and conventions. To avoid notation complications we
assume that the semigroups discussed have an identity. If S has no
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identity, then S'=S\U {1} is residually finite if and only if S is.
Further in the case S has no identity, all the congruences defined on
S1in this paper have restrictions to .S which are easy to describe.

Recall that on an abelian semigroup S with identity, the Green
congruence JC is defined by a 3 b iff aS=0S. If H denotes an JC-
class, define

G(H) = {x €S| Hx N H # J};

Z(H) = S\G(H);

A(H) = {xESIsSQZxSforanysEH};
Z(H) = G(H) \J A(H);

U(H) = {x €S| sx = « for every s € H}.

We also define a congruence oy by x og y iff either x, yEG(H) and
xs=ysforeverys€Horx,yEZ(H).

The following facts are straightforward to prove and will be used in
the next section without explicit mention: G(H) is a subsemigroup of
S containing U(H); Z(H) is a prime ideal of S containing A(H), and
the latter is also an ideal of S; oy is the congruence defined by the
Schiitzenberger representation of S relative to H [2, 3.5]; Z(H) is a
subsemigroup of H and Z(H) /oy is a group with zero (or a group). If
H is a regular 3¢-class [2, 2.3], then H is a maximal subgroup of S,
HCG(H) and H'~Z(H)/ou; otherwise HC Z(H)\A(H).

2. Congruences of finite index separating elements. Let S=S!
be an abelian semigroup and H an 3C-class of S. Define an equivalence
pron Sbyxpyyif x, yEZ(H) and x oy y or x, yEZ(H) and x=1y.
Let pz denote the smallest congruence on .S containing p.

LeMMA 1. (1) The restriction of pu to Z(H) coincides with oy.
(2) Therestriction of py to H is the equality.
(3) If Hisasubgroup of S, then py=on.

Proor. We will construct sy explicitly. The subset Z(H)\A(H) can
be divided in two parts Z; and Z; as follows:

Z\= {xEZ(H)\A(H)I there exists & U(H) such that xu€H};

Z,=complement of Z,in Z(H)\A(H).
Then Z,\JA(H) is an ideal of S. To prove it, let x&€Z,\JA(H) and
yES. If xyEA(H), then xEZ, and there exists & U(H) such that
xuE H. Since xyEZ(H)\A(H), we have sSCxyS for any s&H and
sSCxyuS. On the other hand xyuSCxuS =sS. It follows xyu € H and
xyEZ.

On Z; we define § by: v 8 w iff there exists x, yEG(H), 3EZ,, such
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that x oy ¥ and v=2x, w=2y. Denote by 6* the transitive closure of 8.

Define the relationf on Sby:x 0y iff (a) xand yEG(H) and x on y
or (b) x and yEZ, and there exists %, v& U(H) such that ux=vy or
(c)xand yEZ,and x 6* y or (d) x, yEA(H).

One checks easily that 0 is an equivalence. To show that 0 is a
congruence, assume x 0 y and let 2E.S. In case one of , ¥, zis in A(H)
obviously x2z60 yz. Thus we consider only the other cases:

(i) x,yEG(H). If 2&G(H), clearly xz, y2EG(H) and xz oy yz. If
2&Z,, there exists u& U(H) such that zu & H. It follows xz, y2E 2,
and xzu = yzu, i.e. xz0 yz. If € Z,, then x2, y2E Z,. To see this, assume
for example xzEZ;; then for some uE U(H), xzuEH; but by the
definition of 3¢ and oy, xEG(H) implies the existence of x' &G (H)
such that xx’' S U(H); then xx'z2u €EH and xx'u€ U(H) which con-
tradicts 2&Z,. It is not possible that xz and y2EA(H), for zEA(H)
implies sSCzS for any s€EH; thus sS=sxSCx2S and xzA(H). The
only possibility is xz, yz2&Z,. By the definition of §, we then have
x20 yz.

(i1) x, yEZ,. There exists u, vE U(H) such that xu, yvEH. If
2EG(H) then xzu, y2v&H and xz, y2EZ;. Since xu’ =yv’ for some
u', v EU(H), clearly xzu’=v2zv" and xz 6 yz. Now if 2EZ(H), either
x2&Zy or xyEA(H). If for example xz&E Z,, then xzu’’ E H for some
u" € U(H). 1t follows xzu’u’’ = yzv'u’' €EH and yz&EZ;:. Consequently
x20 yz.

(iii) x, 2&2Z;. To show that x20 yz for every 2E S, it is sufficient to
show that x & y implies x2 8 yz for every 2ES. Assuming x 6 y, there
existsa, BEG(H) and tEZ, such thatx=at, y=8t, aou B. lf zEG(H),
then az, B2EG(H) and az oy Bz. Thus xz=azt and yz=8z¢t imply
xz 8 yz (it is clear that xz, y2E&Z;). In case 2EZ,, then xz and yz
EZ,\JA(H). If x2EZ, for example, there exists u& U(H) such that
xzu € H. But xzu =xzuv where v is an element of U(H) such that
2vE H. Now, xzvu = atzvu = azviu = Bzvtu = yzvu € H ; which shows that
y2EZ, and establishes xz 0 yz. Finally, when 2& Z,, either tzEA(H)
and then x2, y2EA(H), or tzEZ; and again xz 0 yz or {2&Z;. In this
last case tzuEH for some uE U(H); it follows xzu=atzu=ptzu
=yzu & H, which shows that xz, y2E& Z; and satisfy xz 0 yz.

From the definition of 6 one sees easily that pC#. If v is a con-
gruence containing p, let us show that 8C+«. If x 8 y and we are in the
cases (a) or (d) above, clearly x ¥ y. In the case (b), ux =vy implies
ux p vy and thus ux v vx. But we have 1 pupvandalso 1 yu vy v. It
follows x v ux ¥ vy ¥ ». In the case (c) with x § y, then x=at, y=0t
with a, BEG(H) satisfying a oy 8. Since a p 3, it follows oy 8 and
thus x v y. Consequently § =p55. The assertion (1) in the statement of
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the lemma is obvious (see (a) and (d) in the definition of 6). If His a
subgroup of S, then HCG(H) and Z(H)=A(H) which proves (3).
Furthermore in this case, the restriction of 8 to H, which coincides
with oy, is the equality. If H is not a subgroup of S, then HC Z; and
by part (b) of the definition of 8, 0 restricted to H is the equality. This
completes the proof of (2).

COROLLARY. Let S be an abelian semigroup with identity and H an
g¢-class of S. Denote by ¢ the canonical homomorphism ¢u :S—S/pg.
Then ¢u(S) has a nonzero ideal M contained in every nongero ideal of
S. M is isomorphic to the principal factor of H (i.e. H/A(H)). The
group of units of ¢ (S) is the Schiitzenberger group of M\0.

PRrOOF. The corollary is a transcription in S/px of properties of px.
One may observe that if H is a subgroup of S with identity e, then ¢»
can be defined by ¢ (x) =xe if xe € H and ¢ (x) =0if xeE H.

Our next step consists in defining the convenient congruences on
finitely generated semigroups with the same properties as ¢x(S).

LEMMA 2. Let S be a finitely generated abelian semigroup with
identity and zero. Assume that S has an ideal M #0 contained in every
nonzero ideal of S, and that the group G of units of S is the Schiitzen-
berger group of M\O. Let N be a subgroup of G of finite index. Then, the
congruence on S defined by a px b iff aN=>bN is of finite index. Further-
more, given s, tE M, s#t, there exists a subgroup N of G of finite index
such that sN #tN.

Proor. If H= M\0is a group then H=G and S=G". The last part
of the lemma expresses the residual finiteness of a finitely generated
abelian group. Consider now the case M?=0. We have G(H) =G,
A(H)=0, Z(H)=M\JZ; and Zi=H (Z, and Z, are defined in the
proof of Lemma 1). Since N is of finite index, py hasa finite number of
classes in G. Since G acts transitively on H, px has also a finite number
of classes in M. Thus it remains to show that Z, contains only a finite
number of py-classes. Considering the quotient semigroup S/py it is
equivalent to prove that if a semigroup S satisfies all the hypotheses
of the lemma and also has a finite group of units, then Sis finite. Thus
let x1, x2, - -+, &, be the generators of S contained in Z(H) and let
g1, g2+ +, g be the elements of G. Then, the elements x:g; with
1<j<k, form a set of generators of Z(H). Let {yl, SRR y,,} be a
minimal set of generators of Z(H). Then {yl, Yoy ¢t y,.} CZ, since
for every element zEZ, there exists z'©Z; such that zz'€H. To
prove that Z(H) (and thus S) is finite, we shall show that for every
y: (1Si<n) there exists an integer §; such that y%=0. Let s be a
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fixed element of H. From the fact that sy;=0 for every1=1, - - - , n,
we deduce that s cannot have two expressions yfys® - - - y5* and
Yiys - - - ofm with a;SBifori=1, 2, - - -, n and a;,#p;, for at least
one io. Thus [3, Proposition 4.1] the number of possible expressions of
sasaproductof y1, ¥z, + * -+, ¥, is finite. Let s=9793* . - - y7¢ - - . yI»
be an expression of s with a maximal ;. Then 3}¥*'=0 or y}i**=0.
To see this, assume y7**! #0; then y7**' & Z,, otherwise we could find
2E Z,such that 97!z =5 contradicting the maximality of v,. Similarly
97t 545, Thus 97t =t for some tEH, t 5 s; it follows y7**?=0 and for
every y;, there exists §; such that % =0. Therefore Z(H) is finite and
the first part of the lemma is proved. Now consider two elements
s, tEM, s#t. If s, tE H, there exists exactly one g &G such that sg=t.
But G being finitely generated is residually finite and there exists a
subgroup N of G of finite index with g N. The corresponding con-
gruence py is of finite index. If sN=¢N then t=sn=sg for some nEN;
it follows s=sng~! and ng—'=1 implies gEN, a contradiction. Thus
sN#tN. If s€EH, t=0, one may take N=G, and this completes the
proof of the lemma.

With S and N as in Lemma 2 we denote by ¥y the canonical
homomorphism ¢ :S—S/px. The following theorem summarizes all
the results obtained previously.

THEOREM 3. Let S be a finitely generated abelian semigroup and a,
bES,a#b.

(@) If a and b are not 3C equivalent, let H denote the 3C-class of the
element a or b generating the larger ideal, or one of the two 3C-classes if the
ideals are not comparable. If G denotes the Schiitzenberger group of H,
the homomorphism Ygody maps S onto a finite semigroup and a, b have
distinct images.

(b) If a and b are 3C equivalent, let H denote their common 3C-class,
and G the Schiitzenberger group of H. Let N be a subgroup of G of finite
index which does not contain the unique element gEG such that ag="».
Then Yyyoopy maps S onto a finite semigroup and a, b have distinct
images.

In particular, this gives a direct proof of the theorem of Malcev
mentioned in the introduction.
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