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ON A THEOREM OF MALCEV1

GERARD LALLEMENT

Abstract. For any pair of distinct elements a, b in a finitely

generated abelian semigroup S, we indicate what are the homo-

morphisms <¡> of 5 onto a finite semigroup such that <£(a) ;*=</>(&).

This improves a previous result of Malcev which states that the

considered semigroups are residually finite.

A semigroup S is residually finite if for any pair of distinct ele-

ments a, bES, a and b can be separated by a congruence of finite

index (i.e. there exists a congruence p on S such that S/p is finite and

such that the classes of a and b are distinct). In 1958 A. I. Malcev

proved the following theorem: Any finitely generated abelian semi-

group is residually finite [ó]. Malcev's elegant proof is based on two

other results:

(1) Every finitely generated commutative algebra over a field of

characteristic 0 is isomorphic to an algebra of »X« matrices over a

field of characteristic 0 [5].

(2) Every finitely generated group or semigroup of nXn matrices

over a field of characteristic 0 is residually finite [4].

The theorem of (1) is not easily extendable to noncommutative

algebras. Furthermore in the proof of (2) Malcev used the Hubert

basis theorem which allows one to establish the result without an ex-

plicit construction of a congruence separating two elements. For

possible extensions of Malcev's theorem to nonabelian semigroups, it

is of interest to have an explicit description of congruences of finite

index separating two given elements.

A solution to this problem is provided by our Theorem 3. For

connections of residual finiteness with the problem of embedding a

semigroup in a compact semigroup the reader is referred to [l].

1. Notation and conventions. To avoid notation complications we

assume that the semigroups discussed have an identity. If S has no
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identity, then 51 = 5U{l} is residually finite if and only if 5 is.

Further in the case S has no identity, all the congruences defined on

S1 in this paper have restrictions to 5 which are easy to describe.

Recall that on an abelian semigroup 5 with identity, the Green

congruence 3C is defined by a 3C b iff aS = bS. H H denotes an 3C-

class, define

G(H) = {xES\Hxr\H jt 0};

Z(H) =S\G(H);

A(H) = {x E S | sS $ xS for any s E H} ;

2(H) =G(H)KJA(H);

U(H) = {x E S | sx = x for every j£flj.

We also define a congruence o~h by x (Th y iff either x, yEG(H) and

xs = ys for every s E H or x, y EZ(H).

The following facts are straightforward to prove and will be used in

the next section without explicit mention: G(H) is a subsemigroup of

S containing U(H) ; Z(H) is a prime ideal of 5 containing A(H), and

the latter is also an ideal of S; o~h is the congruence defined by the

Schiitzenberger representation of 5 relative to H [2, 3.5]; S (Pf) is a

subsemigroup of H and "Z(H)/aH is a group with zero (or a group). If

H is a regular X-class [2, 2.3], then H is a maximal subgroup of S,

HQG(H) and JJ°^2(PQ/er*; otherwiseHQZ(H)\A(H).

2. Congruences of finite index separating elements. Let S = S*

be an abelian semigroup and H an 3C-class of S. Define an equivalence

Ph on S by x pn y if x, y£Z(PT) and x <th y or x, y£JE2(P0 and x=y.

Let pn denote the smallest congruence on S containing p.

Lemma 1.  (1) The restriction of pH to 2(H) coincides with oh-

(2) The restriction of pH to H is the equality.

(3) If His a subgroup of S,then ph = o'k-

Proof. We will construct pn explicitly. The subset Z(H)\A(H) can

be divided in two parts Zi and Z2 as follows:

Zi= {xEZ(H)\A(H)\   there exists uEU(H) such that xuEH} ;

Z2 = complement of Zi in Z(H)\A(H).

Then ZXUA(JJ) is an ideal of 5. To prove it, let xEZ¿JA(H) and

yES. If xy(£A(H), then xEZi and there exists uEU(H) such that

xuEH. Since xyEZ(H)\A(H), we have sSQxyS for any sEH and

sSQxyuS. On the other hand xyuSQxuS = sS. It follows xyuEH and

xyEZi.
On Z2 we define 5 by: v 5 w iff there exists x, yEG(H), zEZ2, such
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that xffH y and v = zx, w = zy. Denote by 5' the transitive closure of 5.

Define the relation 0 on 5 by : x 0 y iff (a) x and yEGiH) and x<rB y

or (b) x and yEZi and there exists u, vE U(H) such that ux = vy or

(c) x and yGZ2 and x S'y or (d)x,yEà(H).

One checks easily that 0 is an equivalence. To show that 6 is a

congruence, assume x 0 y and let zES. In case one of x, y, z is in A(H)

obviously xz 0 yz. Thus we consider only the other cases:

(i) x,yEGiH). If zEGiH), clearly xz, yzEGiH) and xz <rH yz. If

zEZi, there exists uEUiH) such that zuEH. It follows xz, yzEZi

and xzu=yzu, i.e.xzdyz. lizEZ2, then xz,yzEZ2. To see this, assume

for example xzGZi, then for some uEUiH), xzuEH; but by the

definition of 3C and crH, xEGiH) implies the existence of x'EGiH)

such that xx'EUiH); then xx'zuEH and xx'uEUiH) which con-

tradicts zEZ2. It is not possible that xz and yzEA(H), for z(£&(H)

implies sSQzS for any sEH; thus sS = sxSÇZxzS and xz(£A(H). The

only possibility is xz, yzEZ2. By the definition of 5, we then have

xz 0 yz.

(ii) x, yEZi. There exists u, vEU(H) such that xu, yvEH. If

zEG(H) then xzu, yzvEH and xz, yzEZi. Since xu' = yv' for some

u', v'EU(H), clearly xzu' = yzv' and xz 0 yz. Now if zEZ(H), either

xzGZi or xyEA(H). If for example xzG^i, then xzu"EH for some

u"EU(H). It follows xzu'u" = yzv'u"EH and yzGZi- Consequently

xz 0 yz.

(iii) x, zGZ2. To show that xz0yz for every zES, it is sufficient to

show that x 5 y implies xz 0 yz for every zES. Assuming x o y, there

exists«, ß E G (H) and í Gesuch that x = at, y = ßt, a ffHß- lízEG(H),

then az, ßzEG(H) and az <th ßz. Thus xz = azt and yz = ßzt imply

xz 8 yz (it is clear that xz, yzEZ2). In case zEZi, then xz and yz

GZiWA(ií). If xzGZi for example, there exists uEU(H) such that

xzuEH. But xzm=xzmi> where v is an element of U(H) such that

zvEH. Now, xzvu = atzvu = azvtu = ßzvtu—yzvuEH; which shows that

yzG-Zi and establishes xz 6 yz. Finally, when zEZ2, either tzE^(H)

and then xz, yzGA(H), or tzEZ2 and again xz 0 yz or tzEZi. In this

last case tzuEH for some uEU(H); it follows xzu = atzu=ptzu

= yzuEH, which shows that xz, yzEZi and satisfy xzdyz.

From the definition of 0 one sees easily that pC0. If 7 is a con-

gruence containing p, let us show that 0Cy. If x 0 y and we are in the

cases (a) or (d) above, clearly x 7 y. In the case (b), ux = vy implies

ux p vy and thus ux y vx. But we have l p u pv and also 1 y u y v. It

follows x 7 MX 7 i>y 7 y. In the case (c) with x S y, then x = at, y=ßt

with a, ßEG(H) satisfying a <rH ß. Since a p ß, it follows a 7 ß and

thus x 7 y. Consequently d — pn- The assertion (1) in the statement of
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the lemma is obvious (see (a) and (d) in the definition of 8). If H is a

subgroup of S, then HEG(H) and Z(JJ)=A(JJ) which proves (3).

Furthermore in this case, the restriction of 8 to H, which coincides

with an, is the equality. If H is not a subgroup of S, then PÎÇZi and

by part (b) of the definition of 8, 8 restricted to H is the equality. This

completes the proof of (2).

Corollary. Let S be an abelian semigroup with identity and H an

3C-class of S. Denote by <pH the canonical homomorphism </>#:£—»5/pa.

Then <ph(S) has a nonzero ideal M contained in every nonzero ideal of

S. M is isomorphic to the principal factor of H (i.e. H/A(H)). The

group of units of(pn(S) is the Schiitzenberger group of M\0.

Proof. The corollary is a transcription in S/pn of properties of ph.

One may observe that if H is a subgroup of 5 with identity e, then <pH

can be defined by <Ph(x) =xeii xe E H and <Ph(x) = 0 if xe(£JJ.

Our next step consists in defining the convenient congruences on

finitely generated semigroups with the same properties as <pn(S).

Lemma 2. Let S be a finitely generated abelian semigroup with

identity and zero. Assume that S has an ideal M¿¿0 contained in every

nonzero ideal of S, and that the group G of units of S is the Schiitzen-

berger group of M\0. Let N be a subgroup of G of finite index. Then, the

congruence on S defined by a pn b iff aN = b N is of finite index. Further-

more, given s, tEM, S9^t, there exists a subgroup N of G of finite index

such that sN^tN.

Proof. If H = M\0 is a group then H=G and S = G°. The last part

of the lemma expresses the residual finiteness of a finitely generated

abelian group. Consider now the case M2 = 0. We have G(H)=G,

A(H)=0, Z(H)=M\JZ2 and Zi = P" (Zx and Z2 are defined in the

proof of Lemma 1). Since N is of finite index, pN has a finite number of

classes in G. Since G acts transitively on H, pn has also a finite number

of classes in M. Thus it remains to show that Z2 contains only a finite

number of pAr-classes. Considering the quotient semigroup S/pn it is

equivalent to prove that if a semigroup S satisfies all the hypotheses

of the lemma and also has a finite group of units, then S is finite. Thus

let Xi, Xt, • • • , x, be the generators of S contained in Z(H) and let

git #2, • ■ • , gk be the elements of G. Then, the elements Xig¡ with

l-újúk, form a set of generators of Z(H). Let {yi, • • • , yn} be a

minimal set of generators of Z(H). Then {yi, y2, • • • , y„} ÇZ2 since

for every element zEZ2 there exists z'EZ2 such that zz'EH. To

prove that Z(H) (and thus S) is finite, we shall show that for every

y i (lâlî^w) there exists an integer 5,- such that y\i = 0. Let s be a
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fixed element of H. From the fact that syt = 0 for every i — 1, • • • , n,

we deduce that s cannot have two expressions yXlyT • • ■ yñn and

yi'yf2 ' ' ' yi" with a{^ßi for *™1, 2, • • • , « and a^ß^ for at least

one to. Thus [3, Proposition 4.1 ] the number of possible expressions of

í as a product of yi, y2, ■ ■ ■ ,y„ is finite. Let s = y¡'1y22 • • • yV • • • y»n

be an expression of s with a maximal 7,-. Then yji+1 = 0 or y7*'+2 = 0.

To see this, assume y7,+1 t^O; then y7'+1$Z2, otherwise we could find

zEZi such that y7'+1z = i contradicting the maximality of 7,. Similarly

y7*+19* s. Thus y7'+1 = t for some <£#, * ¡* s ; it follows y¡i+2 = 0 and for

every y,-, there exists 5, such that y¡' = 0. Therefore Z(H) is finite and

the first part of the lemma is proved. Now consider two elements

s, tEM, S9*t. If s, tEH, there exists exactly onegGG such that sg = t.

But G being finitely generated is residually finite and there exists a

subgroup N of G of finite index with g(£N. The corresponding con-

gruence pn is of finite index. If sN = tN then t = sn = sg for some nEN;

it follows s = i«g_1 and «g_1 = l implies gEN, a contradiction. Thus

sN^tN. If sEH, / = 0, one may take N = G, and this completes the

proof of the lemma.

With 5 and A as in Lemma 2 we denote by \pN the canonical

homomorphism \f/if:S—>S/ptf. The following theorem summarizes all

the results obtained previously.

Theorem 3. Let S be a finitely generated abelian semigroup and a,

bES,a9*b.

(a) // a and b are not 3C equivalent, let H denote the 3C-class of the

element a orb generating the larger ideal, or one of the two 3C-classes if the

ideals are not comparable. If G denotes the Schützenberger group of H,

the homomorphism \poo(pH maps S onto a finite semigroup and a, b have

distinct images.

(b) If a and b are 3C equivalent, let H denote their common 3C-class,

and G the Schützenberger group of H. Let N be a subgroup of G of finite

index which does not contain the unique element gEG such that ag = b.

Then iptfod>H maps S onto a finite semigroup and a, b have distinct

images.

In particular, this gives a direct proof of the theorem of Malcev

mentioned in the introduction.
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