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TOPOLOGICAL ALGEBRAS AND
MACKEY TOPOLOGIES

ALLAN C. COCHRAN

Abstract. Let £ be a locally »re-convex algebra with dual

space E'. In a recent paper S. Warner asked if the finest locally

»re-convex topology on E compatible with E' was the mackey

topology. It is shown that this is not the case. A similar result is

given for this question in the 4-convex algebra case. For any A -con-

vex algebra, a construction is given of an associated locally »re-

convex algebra. It is shown that this associated locally »re-convex

topology is always the compact-open topology for the space Cb(S)

with the strict topology.

Seth Warner [9] extended the idea of bornological linear space to

the case of locally »z-convex algebras. For a given locally »z-convex

algebra E with dual space E', he noted the existence of a finest locally

»z-convex topology, %(P, P')> compatible with the given duality. In

this note we show that x(E, E') does not necessarily coincide with the

mackey topology t(P, E'). This answers a question presented by

Warner [9, p. 215, Question 3]. The class of A -convex algebras intro-

duced in [3] and [4] provide a similar situation. There is a finest

A -convex topology, S(P, E'), compatible with a given duality and we

show that 2 (P, E') is not necessarily a mackey topology.

We give a method to construct the finest locally w-convex topology

coarser than a given A -convex topology. Let 5 denote a locally com-

pact hausdorff space, Cb(S) the space of bounded continuous complex-

valued functions on S, ß the strict topology introduced by Buck [2]

and k the compact-open topology. We use the description obtained to

show that the finest locally w-convex topology coarser than ß is pre-

cisely k. Thus, there are no locally m-convex topologies between ß

and k.

2. Preliminaries. In this section the basic definitions are given and

a description of the strict topology is listed for use in §3. Throughout

this note P will denote an algebra over R or C and topology will al-

ways mean locally convex linear topology.

(2.1) Definition. A convex balanced absorbing subset V of E is

called m-convex if V- VE V (i.e. if V is idempotent). A convex bal-
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anced absorbing subset V of E is called A-convex if, for every x in E,

V absorbs x V and Vx.

(2.2) Definition. A locally m-convex algebra is an algebra E with

a topology which has a neighborhood base at zero of m-convex sets.

(2.3) Definition. An A-convex algebra is an algebra E with a

topology which has a neighborhood base at zero of A -convex sets.

For information about locally m-convex algebras see [ó], [l], [8]

and [9 ]; for A -convex algebras see [3] and [4]. An equivalent defini-

tion of A -convex algebra is the following: an A -convex algebra is an

algebra E with a topology defined via a family P of seminorms such

that for p in P and x in E, there are constants M(p, x) and N(p, x)

such that

(i) p(xy) ^M(p, x)p(y), for all y in E;

(ii) p(yx)^N(p, x)p(y), for all y in E.

It is clear that the class of A -convex algebras includes the class of

locally m-convex algebras and, in particular, all Banach algebras.

(2.4) Example. Let S denote a locally compact hausdorff space,

Cb(S) the algebra of all bounded continuous complex-valued functions

on 5 and C¿iS) the set of all nonnegative continuous real-valued

functions on S which vanish at infinity. The strict topology, ß, is

defined in terms of the family of seminorms {p4>'-<bECoiS)},

Ptif) = sup{ I /(*)*(*) I :x E S,f E CbiS)}.

For S = R, (C(,(P), ß) is a complete .4-convex algebra with identity

which is not locally m-convex (see [3]).

Other examples may be constructed using the generalization of

Example 2.4 called weighted spaces ([3], [4] and [lO]).

3. Main results. Let E denote an A -convex algebra with N a

neighborhood base at zero consisting of A -convex sets. Warner [9]

proved that the smallest idempotent set containing a given set P is

U{Pn:w = l, 2, • • • }. For each Fin N, let V* denote the balanced

convex hull of U { Vn:n = 1, 2, • • • }. Since V is absorbing, V* is m-

convex. Let N*= { V*: VEN}. Then N* is a neighborhood base at

zero for an m-convex topology on E.

(3.1) Lemma. Let (£, $>) be an A-convex algebra with N a neighbor-

hood base at zero of A-convex sets. Then N* determines a locally m-

convex topology <t>* which is the finest locally m-convex topology coarser

than $.

Proof. The proof is an easy consequence of the fact that V* is the

smallest m-convex set containing V.
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A neighborhood base of ^4-convex sets for (Cb(S), ß) is given by

{V(T(<t>),d(4>)):4>EC+o(S)}

where T(<p) = {xES:<j>(x)^0}, 0 (</>): r(</>)->P+ such that d(<p)(x)

= l/<p(x) and V(T(<j>), 0(</>)) = {fECb(S): \f(x)\ úd(<p)(x), for all
xET(cp)}.

(3.2) Theorem. The associated locally m-convex topology on Cb(S)

for ß is k.

Proof. Note that [V(T(<p), 0(0))]* = V(T, :?) where P =

{xET(4>):d(<j>)^l} and t?=0|P. Then P= {xES:<j>(x) ̂ 1} which
is a compact subset of S since 4>ECo (S)■ Thus, [V(T(<j>),d(d>))]* is a

«-neighborhood of zero for each r/> E C J (5). It is well known that ß^K

and k is locally m-convex. Hence the associated topology for ß is k.

(3.3) Corollary. For a locally compact Hausdorff space S, there

are no locally m-convex topologies on Cb(S) between ß and k.

The following result gives a solution to Warner's Question 3 of

[9]. Let So denote the space of ordinals less than the first uncountable

ordinal fl with the order topology. Con way [5] has shown that ß is

not a mackey topology on Cb(So). Morris and Wulbert [7] have shown

that k is not mackey and, in fact, a result of Wang [ll] shows that

ß = K. Let B= {fECb(S0):\f(x)\ ál for allxG50}. It is known that
B is not a neighborhood of zero for the mackey topology r. In fact, for

fECb(So), there exists x0ESo with/(y) =%for y^x0. The linear func-

tional defined by L(f) =af is not in the /3-dual but is bounded on B.

For xESo let hx(f)=f(x), fECb(S0). Then hx is in the /3-dual. The
set F defined by the closed balanced convex hull of {hx+i — hx:xES0}

is weakly compact but not equicontinuous [5], [7]. Thus, Vo is a

r-neighborhood of zero but not a k (or ß) neighborhood.

(3.4) Theorem. The space (Cb(S0), r) is not locally m-convex, where

t denotes the mackey topology compatible with k.

Proof. The r-neighborhood W— Vo of zero defined above does not

contain an w-convex r-neighborhood of zero: Suppose H is m-convex,

HEW. Let fEH and xESo with /(x+l)^/(x). Then |/(x)| gl

since/"£P/"CIF, « = 1, 2, • • • , and |/(x)| >1 gives a contradiction

to j fn(x+1) —fn(x) I Sí 1, If H is a r-neighborhood of zero, H absorbs

the T-bounded set P. Then if/(x) =/(x + l) and |/(x)| >1 we use the

convexity of H to obtain a function g with   \g(x)\ >1 and g(x)
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9íg(x+l). By the first part of the proof this is impossible. Hence

HEB so B must be a r-neighborhood of zero. But B is not a r-neigh-

borhood of zero and hence W does not contain an m-convex r-neigh-

borhood of zero. This completes the proof.

The finite intersection of A -convex sets is an A -convex set. Thus,

the supremum of A -convex topologies is A -convex. Whenever (£, i>)

is an A -convex algebra with dual E' there is a finest A -convex topol-

ogy 2(P, E') on E which is compatible with the pair (£, E'). We now

answer the obvious extension of the problem of Warner to the bi-

convex case.

(3.5) Theorem. The space (C¡,(S0), r) is not A-convex.

Proof. Suppose H is an A -convex r-neighborhood of zero with

HEW= Vo. Let xESo. Then there exists a constant K such that

| fix) | ^ K for all / in H. Suppose such a K does not exist and let

gECtiSo) with |g(x-t-l)-g(x)| =1 and g(x)>l. Then gHEMH.
Using the convexity of H and the fact that H absorbs B, there exists

<r>0 such that for any P>0 there exists fEH with |/(x)— /(x4-l)|

^<r and |/(x)| >L. This gives a contradiction to gfEMV" for all/

iniP
Let A ix) = inf {M : \ fix) | g M for all / in H}. Then A (x) is finite

for each x in So- Suppose A is not bounded above. Then there is a

sequence {x„} in So of distinct elements with .4 (xn) ^w, « = 1, 2, • • • .

Since So is sequentially compact there is a convergent subsequence.

We denote this subsequence by {x*} and the limit by Xo. There exists

some fEH and a neighborhood of x0, N, with |/(x)—yl(xo)| ál for

x in A (by continuity of/ and definition oí A). Also, there is an inte-

ger K such that if n^K then xnEN. But {.4(x„)} is unbounded, so

by convexity of H there is a function gEH such that | g(xn) — g(x„+i) |

>1 contrary to g G F°. Thus, A is bounded above so that some mul-

tiple of B contains H. This implies that B is a r-neighborhood of zero

which is a contradiction. Thus r is not A -convex.

It is interesting to observe that for S = R, there are no locally m-

convex topologies in the mackey spectrum of (C¡,(P), ß). This result

follows from Theorem 3.2 and the fact that the weak topology of

(G,(P), ß) is not locally m-convex [4].

We conclude this note with the following two unresolved questions.

(3.6) Question. Let E be an algebra and E' a subspace of the dual

(algebraic) E*. If there are both A -convex and locally m-convex

topologies compatible with (E, E') then must S(£, E') =x(-E. E')?

(3.7) Question. Under what conditions, in terms of E', does

S(£', E) and/or X(P, £') exist?
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