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A THEOREM ON BIQUADRATIC RECIPROCITY

EZRA BROWN

Abstract. The following theorem on biquadratic reciprocity is

proved: if p = q=\ (mod 4) are primes for which (i>|î) = l, and if

p = r1-\-qs1 for some integers r and s, then

(P\qh(q\p)t = l, ifj-1 (mod 8);

= (-1)',       if p5 (mod 8).

Simple expressions for the biquadratic character of some small

primes are also obtained.

K. Bürde [2] has proven the following interesting theorem about

biquadratic reciprocity :

Theorem 1. If p = a2+b2, q = c2+d2, a=c = l, b=d=0 (mod 2),

ab>0, cd>0, p and q are primes, and (p\q) = l, then (p\q)i(q\p)i

= (-l)(r-»l*(ad-bc\p).

If it happens that p can be written as r2+qs2, with r and 5 integers,

then Burde's results acquire a particularly simple form. We shall

prove the following theorem :

Theorem 2. If p = q = l (mod 4) are primes such that (p\q) = l,and

p is representable as r2+qs2, where r and s are integers, then

(Í I ?)«(?!#)« = 1. ? = !  (mod 8);

= (-1)»,       g = 5 (mod 8).

Throughout this paper, we assume that p and q satisfy the hypo-

theses in Theorem 1; (p\q) is the Legendre symbol, and we write

(P15)4=1 or —1 according as p is or is not a biquadratic residue

(modg).

Lemma 1. All prime solutions of the diophantine equation

(1) a2 + b2 = r2 + qs2

are contained in the following sets of expressions:
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2 2 2 2
a = cito + h — t2 — ti) + 2di—toh + tJi)

b = 2c(-toh + Ms) + 2d(/„/i + t2t¡)

(2) 2222 (if s is even)
r = c(t0 + h — h — t2) + 2d( — ioh — hh)

s = 2(—toh + t2h),

a = c(tl + t\ - t\ - t\) + 2d(toh + ht2)

b = 2c(-t0t3 + hh) + d(t¡ + tl - t\ - t\)
(3) iif s is odd).

r = 2citoh - t2t3) + 2dit0t2 + ht,)

2 2 2 2

S = to + t) — h — t2

Here, the ti are independent integer-valued parameters, one or three of

which are odd.

Proof. See [l, §5]. The roles of xu x2, x6 and x6 in [l] are taken

here by a, b, r and s, respectively.

Lemma 2. For any prime solution of il), we have icb—da\ q) = (2| q)

if s is even, and icb — da \ q) = 1 if s is odd.

Proof. If 5 is even, then from (2) we have

cb - da = 2c\-toh + ht2) + 2c¿(Wi + hh)

2222 2

— edito + h — t2 — t¡) — 2d i —toh + hu)

= - cdiih - /o)2 - ih + h)2) - 2d\h - t0)it2 + h) (mod q),

since c2=—d2 (mod q). Multiplying both sides by d, we obtain the

congruence

dicb - da) = - cicih - to) + d(h + t¡))2 (mod q).

Now

icb - da)icb + da) = c2ia2 + b2) - a2ic2 + d2)

= c2p — a2q = c2p ^ 0 (mod q),

since (c, q) = 1. Hence cb — dayéO (mod q) and we may write icb — da q)

= (-l\q)ic\q)(d\q). But by Theorem 5 of [l], (c|g) = l and (á q)

= (2|g); hence icb— da\q) = (2|g), since q = l (mod 4). Proof of the

second statement is similar, relying on the expressions in (3), and is

omitted.

Proof of Theorem 2. By Lemma 2 and Theorem 1, if 5 is even,

then  (reversing the roles of p and q in Theorem 1)  ip\q)dç\P)i



222 EZRA BROWN

= (_l)(3-i)/4(2|^) = li since q = l (mod 4). If 5 is odd, then (q\p)t

(<l\p)*=( — 1)('~1)/4=1 or —1 according as g = l or 5 (mod 8). Hence

(p\ q)t(q\p)t=l or ( — 1)', according as q = 1 or 5 (mod 8).

As an application we determine the biquadratic characters of some

small primes. Let q = S or 13 and let p = l (mod 4) be a prime such

that (p\q) =1. It can be shown, using Thue's lemma on linear con-

gruences, that every such prime is representable as r2+qs2, with

integral r and s. It is also the case that (p | ç)4 = 1 or — 1 according as

[(¿? — 1)/?] is even or odd (here [X]= greatest integer in X). For,

(pI 5)4=1 or — 1 according as p = l or 9 (mod 10), (p\ 13)4=1 if p = l,

3 or 9 (mod 26), and (p\ 13)4= -1 if P = 17, 23 or 25 (mod 26). This
information, together with Theorem 2, yields the following result.

Theorem 3. Let pbea prime = 1 (mod 4). Then :

(a) // (p\S) = l, then (5|/>)4 = (-l)*+l(p-1)/61, where p = r2+5s2.

(b) If (p\ 13) = I, then (13|/>)4= (-l)^*-»'13', where p = r2+l3s2.

It also happens that every prime p = l (mod 4) such that (p\ 37) = 1

can be represented as r2+37s2. The conditions that (p\ 37)4 be 1 or — 1

are not particularly simple: (p\37)^=l or —1 according as

[(/>' —1)/37] is odd or even. Nevertheless, we do have the following.

Theorem 4. If p = l (mod 4) is a prime such that (p\ 37) = 1, then

(37\p)i=(-l)>(p\37)i,wherep = r2+37s2.
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