A THEOREM ON BIQUADRATIC RECIPROCITY

EZRA BROWN

ABSTRACT. The following theorem on biquadratic reciprocity is proved: if $p \equiv q \equiv 1 \pmod{4}$ are primes for which $(p \mid q) = 1$, and if $p = r^2 + qs^2$ for some integers r and s, then

$$(p \mid q)_4(q \mid p)_4 = 1,$$
 if $q \equiv 1 \pmod{8}$;
= $(-1)^s$, if $q \equiv 5 \pmod{8}$.

Simple expressions for the biquadratic character of some small primes are also obtained.

K. Burde [2] has proven the following interesting theorem about biquadratic reciprocity:

THEOREM 1. If $p = a^2 + b^2$, $q = c^2 + d^2$, $a \equiv c \equiv 1$, $b \equiv d \equiv 0 \pmod{2}$, ab > 0, cd > 0, p and q are primes, and (p|q) = 1, then $(p|q)_4(q|p)_4 = (-1)^{(p-1)/4}(ad - bc|p)$.

If it happens that p can be written as $r^2 + qs^2$, with r and s integers, then Burde's results acquire a particularly simple form. We shall prove the following theorem:

THEOREM 2. If $p \equiv q \equiv 1 \pmod{4}$ are primes such that (p|q) = 1, and p is representable as $r^2 + qs^2$, where r and s are integers, then

$$(p \mid q)_4 (q \mid p)_4 = 1, \qquad q \equiv 1 \pmod{8};$$

= $(-1)^s, \qquad q \equiv 5 \pmod{8}.$

Throughout this paper, we assume that p and q satisfy the hypotheses in Theorem 1; (p|q) is the Legendre symbol, and we write $(p|q)_4=1$ or -1 according as p is or is not a biquadratic residue (mod q).

LEMMA 1. All prime solutions of the diophantine equation

(1)
$$a^2 + b^2 = r^2 + qs^2$$

are contained in the following sets of expressions:

Copyright @ 1971, American Mathematical Society

Received by the editors January 19, 1971.

AMS 1970 subject classifications. Primary 10A15; Secondary 10B05, 10C05.

Key words and phrases. Power residues, biquadratic residues, reciprocity, quadratic diophantine equations.

$$a = c(t_0^2 + t_1^2 - t_2^2 - t_3^2) + 2d(-t_0t_2 + t_1t_3)$$

$$b = 2c(-t_0t_3 + t_1t_2) + 2d(t_0t_1 + t_2t_3)$$

(2)

$$r = c(t_0^2 + t_3^2 - t_1^2 - t_2^2) + 2d(-t_0t_2 - t_1t_3)$$

$$s = 2(-t_0t_1 + t_2t_3),$$

$$a = c(t_0^2 + t_1^2 - t_2^2 - t_3^2) + 2d(t_0t_3 + t_1t_2)$$

(3)

$$b = 2c(-t_0t_3 + t_1t_2) + d(t_0^2 + t_2^2 - t_1^2 - t_3^2)$$

$$r = 2c(t_0t_1 - t_2t_3) + 2d(t_0t_2 + t_1t_3)$$

$$s = t_0^2 + t_3^2 - t_1^2 - t_2^2$$

(if s is odd).

Here, the t_i are independent integer-valued parameters, one or three of which are odd.

PROOF. See [1, §5]. The roles of x_1 , x_2 , x_5 and x_6 in [1] are taken here by a, b, r and s, respectively.

LEMMA 2. For any prime solution of (1), we have (cb-da|q) = (2|q)if s is even, and (cb-da|q) = 1 if s is odd.

PROOF. If s is even, then from (2) we have

$$cb - da = 2c^{2}(-t_{0}t_{3} + t_{1}t_{2}) + 2cd(t_{0}t_{1} + t_{2}t_{3})$$

$$- cd(t_{0}^{2} + t_{1}^{2} - t_{2}^{2} - t_{3}^{2}) - 2d^{2}(-t_{0}t_{2} + t_{1}t_{3})$$

$$\equiv - cd((t_{1} - t_{0})^{2} - (t_{2} + t_{3})^{2}) - 2d^{2}(t_{1} - t_{0})(t_{2} + t_{3}) \pmod{q},$$

since $c^2 \equiv -d^2 \pmod{q}$. Multiplying both sides by d, we obtain the congruence

$$d(cb - da) \equiv -c(c(t_1 - t_0) + d(t_2 + t_3))^2 \pmod{q}.$$

Now

$$(cb - da)(cb + da) = c^2(a^2 + b^2) - a^2(c^2 + d^2)$$

= $c^2p - a^2q \equiv c^2p \neq 0 \pmod{q}$,

since (c, q) = 1. Hence $cb - da \neq 0 \pmod{q}$ and we may write $(cb - da \mid q) = (-1 \mid q)(c \mid q)(d \mid q)$. But by Theorem 5 of [1], $(c \mid q) = 1$ and $(d \mid q) = (2 \mid q)$; hence $(cb - da \mid q) = (2 \mid q)$, since $q \equiv 1 \pmod{4}$. Proof of the second statement is similar, relying on the expressions in (3), and is omitted.

PROOF OF THEOREM 2. By Lemma 2 and Theorem 1, if s is even, then (reversing the roles of p and q in Theorem 1) $(p|q)_4(q|p)_4$

 $=(-1)^{(q-1)/4}(2|p)=1$, since $q\equiv 1 \pmod{4}$. If s is odd, then $(q|p)_4$ $(q|p)_4=(-1)^{(q-1)/4}=1$ or -1 according as $q\equiv 1$ or 5 (mod 8). Hence $(p|q)_4(q|p)_4=1$ or $(-1)^s$, according as $q\equiv 1$ or 5 (mod 8).

As an application we determine the biquadratic characters of some small primes. Let q=5 or 13 and let $p\equiv 1 \pmod{4}$ be a prime such that (p|q)=1. It can be shown, using Thue's lemma on linear congruences, that every such prime is representable as r^2+qs^2 , with integral r and s. It is also the case that $(p|q)_4=1$ or -1 according as [(p-1)/q] is even or odd (here [X]=greatest integer in X). For, $(p|5)_4=1$ or -1 according as $p\equiv 1$ or 9 (mod 10), $(p|13)_4=1$ if $p\equiv 1$, 3 or 9 (mod 26), and $(p|13)_4=-1$ if $p\equiv 17$, 23 or 25 (mod 26). This information, together with Theorem 2, yields the following result.

THEOREM 3. Let p be a prime =1 (mod 4). Then: (a) If (p|5)=1, then $(5|p)_4 = (-1)^{s+\lfloor (p-1)/5 \rfloor}$, where $p=r^2+5s^2$. (b) If (p|13)=1, then $(13|p)_4 = (-1)^{s+\lfloor (p-1)/13 \rfloor}$, where $p=r^2+13s^2$.

It also happens that every prime $p \equiv 1 \pmod{4}$ such that $(p \mid 37) = 1$ can be represented as $r^2 + 37s^2$. The conditions that $(p \mid 37)_4$ be 1 or -1are not particularly simple: $(p \mid 37)_4 = 1$ or -1 according as $[(p^9-1)/37]$ is odd or even. Nevertheless, we do have the following.

THEOREM 4. If $p \equiv 1 \pmod{4}$ is a prime such that $(p \mid 37) = 1$, then $(37 \mid p)_4 = (-1)^s (p \mid 37)_4$, where $p = r^2 + 37s^2$.

References

1. Ezra Brown, Representations of discriminantal divisors by binary quadratic forms, J. Number Theory 3 (1971).

2. Klaus Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235 (1969), 175–184. MR 39 #2694.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIR-GINIA 24061