AN INTEGRAL REPRESENTATION FOR GENERALIZED TEMPERATURES IN TWO SPACE VARIABLES

DEBORAH TEPPER HAIMO1

ABSTRACT. An integral representation is derived for a function which satisfies the generalized heat equation in one of the space variables and the adjoint generalized heat equation in the other space variable.

In recent papers [2]-[7], series and integral representation theories were developed for generalized temperature functions. In this note, we derive an integral representation for a function which satisfies the generalized heat equation in one of the space variables and the adjoint generalized heat equation in the other space variable.

A generalized temperature function is a C^2 solution u(x, t) of the generalized heat equation

$$\Delta_x(u(x, t)) = (\partial/\partial t)u(x, t),$$

where $\Delta_x f(x) = f''(x) + (2\nu/x)f'(x)$, $\nu > 0$. The adjoint generalized heat equation is given by

$$\Delta_x u(x, t) + (\partial/\partial t) u(x, t) = 0.$$

The fundamental solution of the generalized heat equation is the function

$$G(x;t) = \int_0^\infty e^{-tu^2} \mathfrak{g}(xu) d\mu(u) = \left(\frac{1}{2t}\right)^{r+1/2} e^{-x^2/4t},$$

where

$$g(z) = 2^{\nu-1/2}\Gamma(\nu + \frac{1}{2})z^{1/2-\nu}J_{\nu-1/2}(z),$$

$$d\mu(z) = \frac{1}{2^{\nu-1/2}\Gamma(\nu + \frac{1}{2})}z^{2\nu}dz,$$

$J_{\alpha}(z)$ being the ordinary Bessel function of order α . If

Received by the editors December 22, 1970 and, in revised form, March 18, 1971. AMS 1970 subject classifications. Primary 35C15; Secondary 35K05.

Key words and phrases. Generalized temperatures, integral representations, generalized heat equation, Bessel function.

¹ The research of this paper was supported by the National Science Foundation under grant GP 20536.

$$D(x, y, z) = \frac{2^{2r-5/2} \left[\Gamma(\nu + \frac{1}{2})\right]^2}{\Gamma(\nu) \pi^{1/2}} (xyz)^{1-2r} \left[\Delta(x, y, z)\right]^{2r-2},$$

where $\Delta(x, y, z)$ is the area of a triangle whose sides are x, y, z if there is such a triangle, and otherwise, D(x, y, z) = 0, the associated function f(x, y) corresponding to a function f(x) is given by

$$f(x, y) = \int_0^\infty f(u) D(x, y, u) d\mu(u), \qquad 0 < x, y < \infty.$$

The function associated with the fundamental solution G(x; t) is

$$G(x, y; t) = \int_0^\infty e^{-tu^2} \mathfrak{J}(xu) \mathfrak{J}(yu) d\mu(u) = \left(\frac{1}{2t}\right)^{\nu+1/2} e^{-(x^2+y^2)/4t} \mathfrak{J}\left(\frac{xy}{2t}\right),$$

where

$$g(z) = 2^{\nu-1/2} \Gamma(\nu + \frac{1}{2}) z^{1/2-\nu} I_{\nu-1/2}(z),$$

 $I_{\alpha}(z)$ being the Bessel function of imaginary argument and order α . A bounded function f(x) for which

$$\sum_{j=1}^n \sum_{k=1}^n a_j \bar{a}_k f(x_j, x_k) \ge 0$$

for any $x_1, x_2, \dots, x_n > 0$ and arbitrary complex numbers a_1, a_2, \dots, a_n is said to be positive definite.

We establish two theorems, each a consequence of two basic lemmas which give integral representations for functions of one space variable.

LEMMA 1. A function u(x, t) has the representation

$$u(x, t) = \int_0^\infty e^{-tu^2} g(xu) d\alpha(u), \qquad t > 0,$$

where $\alpha(u)$ is a nondecreasing function iff

- (i) $\Delta_x u(x, t) = -(\partial/\partial t) u(x, t), t > 0$,
- (ii) $u(x, t) \ge 0, t > 0$.

PROOF. The necessity of the conditions is immediate on noting that $g(xu) \ge 0$ and that $\Delta_x g(xu) = u^2 g(xu)$, with differentiation under the integral sign justifiable.

To establish sufficiency, consider the function

$$v(x, t) = G(x; t)u\left(\frac{x}{t}, \frac{1}{t}\right), \qquad t > 0.$$

Then it readily follows that v(x, t) is a nonnegative generalized temperature function for t>0. Hence by [2, p. 49], we have

$$v(x, t) = \int_{0}^{\infty} G(x, y; t) d\beta(y),$$

with $\beta(y)$ nondecreasing, or

$$u(x, t) = \int_0^\infty e^{-y^2t} g(xy) d\alpha(y)$$

where $\alpha(y) = \beta(2y)$, and the proof is complete.

LEMMA 2. A function u(x, t) has the representation

$$u(x,t) = \int_0^\infty e^{-tu^2} g(xu) d\alpha(u), \qquad t > 0,$$

where $\alpha(u)$ is nondecreasing iff

- (i) $\Delta_x u(x, t) = (\partial/\partial t) u(x, t), t > 0$,
- (ii) u(z, t) is analytic for each t > 0 and $|\operatorname{Re} z| < R$,
- (iii) $u(ix, t) \ge 0, t > 0.$

PROOF. The necessity of the conditions is immediate with the analyticity of u(z, t) a consequence of Theorem 5.3 of [2].

Conversely, since $u(iy, t) \ge 0$ and u(iy, t) is a solution of the adjoint generalized heat equation for t > 0, the result follows by the preceding lemma.

Combining these two results, we have the following.

THEOREM 3. A function u(x, y, t) has the representation

$$u(x, y, t) = \int_0^\infty e^{-tu^2} g(xu) g(yu) d\mu(u), \qquad t > 0,$$

with $\alpha(u)$ nondecreasing iff

- (i) $\Delta_x u(x, y, t) = -\Delta_y (x, y, t) = (\partial/\partial t) u(x, y, t)$,
- (ii) for $y \ge 0$, t > 0, u(z, y, t) is analytic for $|\operatorname{Re} z| < R$,
- (iii) for each $x \ge 0$, $y \ge 0$, t > 0, $u(ix, y, t) \ge 0$.

PROOF. The necessity of the conditions are readily verified. Conversely, an appeal to Lemma 1, yields, for fixed x,

$$u(x, y, t) = \int_0^\infty e^{-tu^2} g(yu) d\varphi(x, u),$$

where, for each x, $\varphi(x, u)$ is nondecreasing. Hence

$$u(x, 0, t) = \int_0^\infty e^{-tu^2} d\varphi(x, u).$$

But, u(x, 0, t) satisfies the conditions of Lemma 2 so that

$$u(x, 0, t) = \int_0^\infty e^{-tu^2} \mathfrak{J}(xu) d\alpha(u),$$

with $\alpha(u)$ nondecreasing. Consequently,

$$\int_0^\infty e^{-tu^2} [g(xu)d\alpha(u) - d\varphi(x,u)] = 0,$$

and since the left-hand side is a Laplace transform, it follows by uniqueness, that, for each fixed x,

$$\mathfrak{g}(xu)d\alpha(u) = d\varphi(x, u),$$

yielding the desired representation for u(x, y, t).

An example illustrating the theorem is given by

$$\left(\frac{1}{2t}\right)^{\nu+1/2}e^{(-x^2+y^2)/4t}\mathfrak{g}\left(\frac{xy}{2t}\right)=\int_0^\infty e^{-tu^2}\mathfrak{g}(xu)\mathfrak{g}(yu)d\mu(u).$$

We establish criteria for a similar representation, but with $\alpha(u)$ a nondecreasing bounded function, again, by first proving two basic lemmas.

LEMMA 4. A necessary and sufficient condition that

$$u(x, t) = \int_0^\infty e^{-tu^2} \mathfrak{J}(xu) d\alpha(u), \qquad t > 0,$$

with $\alpha(u)$ nondecreasing and bounded, is that

- (i) $\Delta_x u(x, t) = (\partial/\partial t) u(x, t), t > 0$,
- (ii) u(x, t) > -M for some M > 0, t > 0,
- (iii) u(x, 0+) exists and is positive definite.

PROOF. If the integral representation holds, then (i) is immediate; (ii) follows from the fact that

$$|u(x,t)| \leq \int_0^\infty d\alpha(u) < \infty, \quad t > 0;$$

and (iii) from [1].

Conversely, we note that by (i) and (ii), u(x, t) + M is a positive generalized temperature function, and hence, by Corollary 8.6 of [2],

$$u(x, t) = \int_0^\infty G(x, y; t) u(y, 0+) d\mu(y), \quad t > 0.$$

But by [1], (iii) implies that

$$u(x,0+) = \int_0^\infty g(xu)d\alpha(u),$$

with $\alpha(u)$ nondecreasing and bounded. Hence

$$u(x,t) = \int_0^\infty G(x,y;t)d\mu(y) \int_0^\infty \mathfrak{J}(yu)d\alpha(u)$$
$$= \int_0^\infty d\alpha(u) \int_0^\infty \mathfrak{J}(yu)G(x,y;t)d\mu(y)$$
$$= \int_0^\infty e^{-tu^2} \mathfrak{J}(ux)d\alpha(u),$$

the interchange in order of integration being justifiable by Fubini's theorem, since $\alpha(u)$ is a nondecreasing bounded function. Thus the proof is complete.

LEMMA 5. A necessary and sufficient condition that

$$u(x,t) = \int_0^\infty e^{-tu^2} g(xu) d\alpha(u), \qquad t > 0,$$

with $\alpha(u)$ nondecreasing and bounded is that

- (i) $\Delta_x u(x, t) = -(\partial/\partial t) u(x, t), t > 0$,
- (ii) u(z, t) is analytic for each t > 0 and $|\operatorname{Re} z| < R$,
- (iii) u(ix, t) > -M for some M > 0, t > 0,
- (iv) u(ix, 0+) exists and is positive definite.

PROOF. The necessity of the conditions are immediate and the sufficiency follows on noting that u(x, -t) is a generalized temperature for t < 0, and hence u(ix, t) is a generalized temperature for t > 0. Thus u(ix, t) satisfies the conditions of Lemma 4 and hence the desired integral representation follows for u(x, t).

Lemmas 4 and 5 yield the following result whose proof is established analogously to that for Theorem 3 and hence will be omitted.

THEOREM 6. A function u(x, y, t) has the representation

$$u(x, y, t) = \int_0^\infty e^{-tu^2} g(xu) g(yu) d\alpha(u), \qquad t > 0,$$

with $\alpha(u)$ nondecreasing and bounded iff

- (i) $\Delta_x u(x, y, t) = -\Delta_u u(x, y, t) = (\partial/\partial t) u(x, y, t), t > 0.$
- (ii) For $x \ge 0$, t > 0, u(x, z, t) is analytic for $|\operatorname{Re} z| < R$,
- (iii) u(x, iy, t) > -M,
- (iv) u(x, 0, 0+), u(0, iy, 0+) exist and are positive definite.

The theorem is illustrated by the function

$$u(x, y, t) = e^{-ta^2} \mathfrak{J}(xa) \mathfrak{I}(ya)$$

which satisfies the conditions of the theorem and which has the representation

$$u(x, y, t) = \int_0^\infty e^{-tu^2} g(xu) g(yu) d\alpha(u),$$

where $\alpha(u)$ is constant except for a unit positive jump at u=a.

REFERENCES

- 1. F. M. Cholewinski, D. T. Haimo and A. E. Nussbaum, A necessary and sufficient condition for the representation of a function as a Hankel-Stieltjes transform, Studia Math. 37 (1970), 57-62.
- 2. F. M. Cholewinski and D. T. Haimo, The Weierstrass-Hankel convolution transform, J. Analyse Math. 17 (1966), 1-58. MR 35 #5866.
- 3. ——, Integral representations of solutions of the generalized heat equation, Illinois J. Math. 10 (1966), 623-638. MR 33 #7796.
- 4. D. T. Haimo, Expansions in terms of generalized heat polynomials and of their Appell transforms, J. Math. Mech. 15 (1966), 735-758. MR 33 #4340.
- 5. ———, Generalized temperature functions, Duke Math. J. 33 (1966), 305-322. MR 34 #1802.
- 6. ——, Series representation of generalized temperature functions, SIAM J. Appl. Math. 15 (1967), 359-367. MR 35 #3204.
- 7. ——, Equivalence of integral transform and series expansion representation of generalized temperatures, Analytic Methods in Mathematical Physics, Gordon and Breach, New York, 1970, pp. 453-459.
- 8. D. V. Widder, Functions of three variables which satisfy both the heat equation and Laplace's equation in two variables, J. Austral. Math. Soc. 3 (1963), 396-407. MR 28 #4140.
- 9. ——, A problem of Kampé de Fériet, J. Math. Anal. Appl. 9 (1964), 458-467. MR 34 #8107.

University of Missouri-St. Louis, St. Louis, Missouri 63121