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AN INTEGRAL REPRESENTATION FOR GENERALIZED
TEMPERATURES IN TWO SPACE VARIABLES

DEBORAH TEPPER HAIMO1

Abstract. An integral representation is derived for a function

which satisfies the generalized heat equation in one of the space

variables and the adjoint generalized heat equation in the other

space variable.

In recent papers [2]-[7], series and integral representation theories

were developed for generalized temperature functions. In this note,

we derive an integral representation for a function which satisfies

the generalized heat equation in one of the space variables and the

adjoint generalized heat equation in the other space variable.

A generalized temperature function is a C2 solution u(x, t) of the

generalized heat equation

Ax(u(x, I)) = (d/dt)u(x, t),

where Axf(x) =f"(x) + (2v/x)f'(x), v>0. The adjoint generalized heat

equation is given by

Axu(x, t) + (d/dt)u(x, t) = 0.

The fundamental solution of the generalized heat equation is the

function

e-'u%S(xu)dß(u) = f — J      e-*'«',

where

g(z) = 2-»/»r(i. + h)zm-J.-M,

i
dß(z) =-z2"dz,

2>-"2T(v + §)

Ja(z) being the ordinary Bessel function of order a. If
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22,-6/2 [r(„+ 1)12

D(x, y, z) =-=7—77^ (xyzY~2'[A(x, y, z)]2-2,

where A(x, y, z) is the area of a triangle whose sides are x, y, z ii there

is such a triangle, and otherwise, Dix, y, z) =0, the associated func-

tion fix, y) corresponding to a function /(x) is given by

/100

f(u)D(x, y, u)dn(u),        0 < x, y < 00.
o

The function associated with the fundamental solution G(x; t) is

G(x, y ; t) = J   e-^â(xu)â(yu)du(u) = (-) '     e~ *«* '«* (^),

where

*(*) = Tr^Tfy + i)zi/3->/,_1/2(z),

Ia(z) being the Bessel function of imaginary argument and order a.

A bounded function/(x) for which

n      n

S 22 aßkf(x,; xk) = 0
i-1 i-1

for any Xi, xs, • • • , x„>0 and arbitrary complex numbers au a2, - - - ,

an is said to be positive definite.

We establish two theorems, each a consequence of two basic

lemmas which give integral representations for functions of one

space variable.

Lemma 1. A function u(x, t) has the representation

/100

e-,M,í(x«)áa(íí),        / > 0,
o

where a(u) is a nondecreasing function iff

(i) Ax«(x, 0 = -(d/dt)u(x, t), t > 0,

(ii) uix, t) è 0, t > 0.

Proof. The necessity of the conditions is immediate on noting that

j3(xm)^0 and that Axá(xw) =u23ixu), with differentiation under the

integral sign justifiable.

To establish sufficiency, consider the function

vix, t) = Gix;t)u(—, — J,       í>0.
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Then it readily follows that v(x, t) is a nonnegative generalized tem-

perature function for i>0. Hence by [2, p. 49], we have

G(x,y;t)dß(y),
o

with ß(y) nondecreasing, or

/► 00

e-v'lâ(xy)da(y)

o

where a(y) =ß(2y), and the proof is complete.

Lemma 2. A function u(x, t) has the representation

/l  00 e->u'3(xu)da(u),       I > 0,
o

where a(u) is nondecreasing iff

(i) AxM(x, t)=(d/dt)u(x, t), t>0,

(ii) u(z, t) is analytic for each t>0 and | Re z\ <P,

(Hi) u(ix, i)^0, t>0.

Proof. The necessity of the conditions is immediate with the

analyticity of u(z, t) a consequence of Theorem 5.3 of [2].

Conversely, since u(iy, t)^0 and u(iy, t) is a solution of the adjoint

generalized heat equation for i>0, the result follows by the preceding

lemma.

Combining these two results, we have the following.

Theorem 3. A function u(x, y, t) has the representation

/> oo
e-^g(xu)ä(yu)dß(u),       I > 0,

0

witha(u) nondecreasing iff

(i) Axu(x, y, t) = —A„(x, y, t) = (d/dt)u(x, y, t),

(ii) for y^O, ¿>0, u(z, y, t) is analytic for | Re z\ <R,

(iii) for each x^O, y = 0, t>0, u(ix, y, t) ^0.

Proof. The necessity of the conditions are readily verified.

Conversely, an appeal to Lemma 1, yields, for fixed x,

/>  00

e-tu,â(yu)d<p(x, u),

o

where, for each x, <p(x, u) is nondecreasing. Hence
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/» 00

e~tu*d<p(x, u).

0

But, u(x, 0, /) satisfies the conditions of Lemma 2 so that

/l  00 e-tu'g(xu)da(u),

o

with a(u) nondecreasing. Consequently,

0

e~tut[S(xu)da(u) — d<pix, u)] = 0,

and since the left-hand side is a Laplace transform, it follows by

uniqueness, that, for each fixed x,

Qixu)daiu) = d<(>ix, u),

yielding the desired representation for w(x, y, t).

An example illustrating the theorem is given by

(—)      e^+^'^J—\ =  f   e-'u,3ixu)äiyu)dniu).

We establish criteria for a similar representation, but with a(w)

a nondecreasing bounded function, again, by first proving two basic

lemmas.

Lemma 4. A necessary and sufficient condition that

e-tu,gixu)daiu),       t > 0,
o

with aiu) nondecreasing and bounded, is that

(i) A*w(x, t)=id/dt)uix, t), t>0,

(ii) w(x, t)>-Mfor some M>0, t>0,

(iii) m(x, 0+) exists and is positive definite.

Proof. If the integral representation holds, then (i) is immediate;

(ii) follows from the fact that

/• 00

daiu) < oo,        I > 0;
nJ 0

and (iii) from [l].

Conversely, we note that by (i) and (ii), w(x, t)+M is a positive

generalized temperature function, and hence, by Corollary 8.6 of

[2],
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/>  OO

G(x,y;t)u(y,0+)dß(y),        t > 0.
a

But by [l], (iii) implies that

3(xu)da(u),
o

with a(u) nondecreasing and bounded. Hence

/I M /»oo

G(x,y;t)dß(y) I    $(yu)da(u)
0 * 0

/»co /» x

da(u) I    á(v«)C7(x, y;0¿M(y)
0 "O

=   I Ke-tu*g(ux)da(u),
J o

the interchange in order of integration being justifiable by Fubini's

theorem, since a(u) is a nondecreasing bounded function. Thus the

proof is complete.

Lemma 5. A necessary and sufficient condition that

e-,v}S(xu)da(u),        t > 0,
o

with a(u) nondecreasing and bounded is that

(i) Axu(x, t) = -(d/dt)u(x, t), t>0,

(ii) u(z, t) is analytic for each t>0 and | Re z\ <R,

(iii) u(ix, t) > —Mfor some M>0, t>0,

(iv) u(ix, 0+) exists and is positive definite.

Proof. The necessity of the conditions are immediate and the

sufficiency follows on noting that u(x, —t) is a generalized tem-

perature for t<0, and hence u(ix, t) is a generalized temperature for

/>0. Thus u(ix, t) satisfies the conditions of Lemma 4 and hence the

desired integral representation follows for u(x, t).

Lemmas 4 and 5 yield the following result whose proof is established

analogously to that for Theorem 3 and hence will be omitted.

Theorem 6. A function u(x, y, t) has the representation

/t 00 e-'v'g(xu)ä(yu)da(u),       t > 0,
o

with a(u) nondecreasing and bounded iff
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(i) Axu(x, y, t) = — A„m(x, y, t) =(d/dt)u(x, y, t), t>0.

(ii)  For x = 0, ¿>0, w(x, z, t) is analytic for | Re z\ <R,

(iii) m(x, iy, t)> —M,

(iv) îî(x, 0, 0+ ), w(0, iy, 0+) ex¿s¿ awd are positive definite.

The theorem is illustrated by the function

u(x, y, I) = e-ta,g(xa)ä(ya)

which satisfies the conditions of the theorem and which has the

representation

/I  00

e~ '"'a (xu) ê (yu) da (u),
a

where a(u) is constant except for a unit positive jump at u = a.
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