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THE FUNCTIONAL EQUATION OF SOME
DIRICHLET SERIES. II

BRUCE C. BERNDT

ABSTRACT. We derive the functional equation of a class of
Dirichlet series. A particular case of our result was first given by
Rademacher.

For any positive integer k, Rademacher [2] showed that the Dirichlet
series
k 2
Z(s) = Z{ 2 n4 3 n's} (c=Res>1)
1=1 \n>0;n=Uk) n>0;n=—1k)

has an analytic continuation to the entire complex s-plane that is analytic
except for a double pole at s = 1, and satisfies the functional equation

M (m[k)=T2(s/2)Z(s) = (m[kyT*({1 — s}/DZ(1 — s).

Rademacher’s proof used a familiar representation of the Hurwitz zeta-
function. The purpose of this note is to show that a simpler proof of (1)
as well as a considerable generalization can be given by employing Epstein
zeta-functions rather than the Hurwitz zeta-function.

For g and h real and o > 1 let

Z(s; g, h) = 3 "™ |n + g|7,

where the dash ’ indicates that the summation is over all integers n except
in the possibility that n + g = 0. Z(s; g, h) has an analytic continuation
to the entire complex plane and is entire if /4 is not an integer and is
analytic everywhere except at s = 1 where there is a simple pole with
residue 2 when # is an integer [1]. Furthermore, [1, p. 207] we have the
functional equation

) 7 (s|2)Z(s; g, h) = e 2™ohg V2D ({1 — 5}/2)Z(1 — s; h, —§g).
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Now, for any fixed positive integer k and 4 real, define for all s,

k
Z(s) = 3 &2 (s; 1]k, b)
and =

ZXs) = S Z(s; (1 + Wk, 0)Z(s; (k — I + h)[k, 0).
1=1

We shall now prove the

THEOREM. Z,(s) and Z; (s) satisfy the functional equation
3 (k)™ T*(s]2)Z,(s) = (wk) ' T*({1 — s}/DZ3(1 — s).
For all h, Z}(s) has a double pole at s = 1. If k is even and h = 0 (mod k),
or if k is odd and h = 0 (mod k), then Z,(s) has a double pole at s = 1.
If h is an integer not satisfying either of the former conditions, Z,(s) is either
entire or has a simple pole at s = 1. If h is not an integer, Z,(s) is entire.

ProoF. Consider (2) with g =1k, 1 1<k, and 0 < 0. Put n =
mk +j, —oo<m< oo,j=1,---,k. Then,

ﬂ_S/zF(s/Z)e”""/kZ(s; l/k, h)
— 7.,,(.1:—1)/21‘\({1 _ s}/2) Z: e—zwiln/kln + hls—l

k
= 7_‘_(s—l)lzl'!({l — s}/z)ze—21rili/k z' Imk +] + h|s—l,
i=1 m

or
(mk) /2T (s[2)e* ™ *Z(s; 1]k, h)
k
(4) = (ﬂk)(s_l)/zl-‘({l _ s}/z)k—llz ze—zm'u/lcz(l — s (] + h)/k, 0).
Define =

&(s; U[k, h) = (mwk)™*/*T(s[2)e*"™*Z(s; [k, h),

the symmetric k X k matrix 4 = [a;;] = [k~2/2e7*"Y/*], and v,(s, h) to
be the column vector whose /th component is &(s; (/ + r)/k, h),1 = I Z k.
Then the k relations given by (4) can be written as

) vo(s, h) = Av,(1 — 5, 0).
Now, A% = H = k71[b,;], where

k
b” = Z e—21ri(l+:i)m/k= k, if 1 +] =k or 2k,

m=1

=0, otherwise,
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ie., if H = [h;], h,; = 0 except when / 4 j = 0 (mod k) in which case
h;; = 1. If T denotes the transpose, we then have from (5)

(k)= T*(s/2)Z,(s)
= vd(s, h)vy(s, h) = {Av,(1 — 5, 0)}TAv,(1 — 5, 0)
= 0,(1 — 5,00THv,(1 — 5,0) = (wk)*'T*({1 — s}/2)Z*1 — s),

by a direct calculation and the fact that Z(s; h/k, 0) = Z(s; (h + k)/k, 0).
This then proves (3).

It is clear from our remarks on Z(s; g, h) that Z;(s) has a double pole
at s = 1. Also, if # =0 (mod k) when k is even, or if A = 0 (mod k)
when k is odd, the coefficient of (s — 1)~2 in the Laurent expansion of
Z,(s) about s = 1 is easily seen to be 4k. However, for other integral
values of A, the coefficient of (s — 1)~2 is

462ﬂil(2h)/k = 0.

AVE

l

In general, the constant term in the Laurent expansion of Z(s; g, &) about
s = 1 is a function of g. Thus, Z,(s) may have a simple pole at s = 1 or
might be analytic at s = 1. Since Z(s; g, 4) is entire if 4 is not an integer,
then clearly Z,(s) is entire as well, and this completes the proof.

We now show that Rademacher’s result (1) is a special case of (3).
Put A = 0 in (3). It is readily seen that Z(s; I/k, 0) = Z(s; (k — I)/k, 0).
Hence Z,(s) = Zg5(s). Now for ¢ > 1,

Zy(s) =ézz(s; k,0) = K 5 {z' |mk + l|-8}2 - k“ZZ{ 57 |,,|—s}2

I=1\m =1 {n=Uk)

k 2
— k=S S n's} = K™Z(s),

1=1=n>0:nél(k) n>0;n=—1(k)

and hence (3) reduces to (1).
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