THE FUNCTIONAL EQUATION OF SOME DIRICHLET SERIES. II

BRUCE C. BERNDT

Abstract

We derive the functional equation of a class of Dirichlet series. A particular case of our result was first given by Rademacher.

For any positive integer k, Rademacher [2] showed that the Dirichlet series

$$
Z(s)=\sum_{l=1}^{k}\left\{\sum_{n>0 ; n=l(k)} n^{-s}+\sum_{n>0 ; n=-l(k)} n^{-s}\right\}^{2} \quad(\sigma=\operatorname{Re} s>1)
$$

has an analytic continuation to the entire complex s-plane that is analytic except for a double pole at $s=1$, and satisfies the functional equation

$$
\begin{equation*}
(\pi / k)^{-s} \Gamma^{2}(s / 2) Z(s)=(\pi / k)^{s-1} \Gamma^{2}(\{1-s\} / 2) Z(1-s) . \tag{1}
\end{equation*}
$$

Rademacher's proof used a familiar representation of the Hurwitz zetafunction. The purpose of this note is to show that a simpler proof of (1) as well as a considerable generalization can be given by employing Epstein zeta-functions rather than the Hurwitz zeta-function.

For g and h real and $\sigma>1$ let

$$
Z(s ; g, h)=\sum_{n}^{\prime} e^{2 \pi i h n}|n+g|^{-s},
$$

where the dash ' indicates that the summation is over all integers n except in the possibility that $n+g=0 . Z(s ; g, h)$ has an analytic continuation to the entire complex plane and is entire if h is not an integer and is analytic everywhere except at $s=1$ where there is a simple pole with residue 2 when h is an integer [1]. Furthermore, [1, p. 207] we have the functional equation

$$
\begin{equation*}
\pi^{-s / 2} \Gamma(s / 2) Z(s ; g, h)=e^{-2 \pi i g h} \pi^{(s-1) / 2} \Gamma(\{1-s\} / 2) Z(1-s ; h,-g) . \tag{2}
\end{equation*}
$$

Received by the editors November 13, 1970.
AMS 1969 subject classifications. Primary 1041.
Key words and phrases. Dirichlet series, functional equation, Epstein zeta-function, Hurwitz zeta-function.

Now, for any fixed positive integer k and h real, define for all s,

$$
Z_{h}(s)=\sum_{l=1}^{k} e^{4 \pi i l h / k} Z^{2}(s ; l / k, h)
$$

and

$$
Z_{h}^{*}(s)=\sum_{l=1}^{k} Z(s ;(l+h) / k, 0) Z(s ;(k-l+h) / k, 0)
$$

We shall now prove the
Theorem. $\quad Z_{h}(s)$ and $Z_{n}^{*}(s)$ satisfy the functional equation

$$
\begin{equation*}
(\pi k)^{-s} \Gamma^{2}(s / 2) Z_{h}(s)=(\pi k)^{s-1} \Gamma^{2}(\{1-s\} / 2) Z_{h}^{*}(1-s) . \tag{3}
\end{equation*}
$$

For all $h, Z_{n}^{*}(s)$ has a double pole at $s=1$. If k is even and $h \equiv 0\left(\bmod \frac{1}{2} k\right)$, or if k is odd and $h \equiv 0(\bmod k)$, then $Z_{h}(s)$ has a double pole at $s=1$. If h is an integer not satisfying either of the former conditions, $Z_{h}(s)$ is either entire or has a simple pole at $s=1$. If h is not an integer, $Z_{h}(s)$ is entire.

Proof. Consider (2) with $g=l / k, 1 \leqq l \leqq k$, and $\sigma<0$. Put $n=$ $m k+j,-\infty<m<\infty, j=1, \cdots, k$. Then,

$$
\begin{aligned}
& \pi^{-s / 2} \Gamma(s / 2) e^{2 \pi i l h / k} Z(s ; l / k, h) \\
& \quad=\pi^{(s-1) / 2} \Gamma(\{1-s\} / 2) \sum_{n}^{\prime} e^{-2 \pi i l n / k}|n+h|^{s-1} \\
& \quad=\pi^{(s-1) / 2} \Gamma(\{1-s\} / 2) \sum_{j=1}^{k} e^{-2 \pi i l j / k} \sum_{m}^{\prime}|m k+j+h|^{s-1},
\end{aligned}
$$

or

$$
\begin{align*}
& (\pi k)^{-s / 2} \Gamma(s / 2) e^{2 \pi i l h / k} Z(s ; l / k, h) \\
& \quad=(\pi k)^{(s-1) / 2} \Gamma(\{1-s\} / 2) k^{-1 / 2} \sum_{j=1}^{k} e^{-2 \pi i l j / k} Z(1-s ;(j+h) / k, 0) \tag{4}
\end{align*}
$$

Define

$$
\xi(s ; l / k, h)=(\pi k)^{-s / 2} \Gamma(s / 2) e^{2 \pi i l h / k} Z(s ; l / k, h),
$$

the symmetric $k \times k$ matrix $A=\left[a_{l j}\right]=\left[k^{-1 / 2} e^{-2 \pi i l j / k}\right]$, and $v_{r}(s, h)$ to be the column vector whose l th component is $\xi(s ;(l+r) / k, h), 1 \leqq l \leqq k$. Then the k relations given by (4) can be written as

$$
\begin{equation*}
v_{0}(s, h)=A v_{h}(1-s, 0) . \tag{5}
\end{equation*}
$$

Now, $A^{2}=H=k^{-1}\left[b_{l j}\right]$, where

$$
\begin{aligned}
b_{l j}=\sum_{m=1}^{k} e^{-2 \pi i(l+j) m / k} & =k, \quad \text { if } l+j=k \text { or } 2 k, \\
& =0, \quad \text { otherwise }
\end{aligned}
$$

i.e., if $H=\left[h_{l j}\right], h_{l j}=0$ except when $l+j \equiv 0(\bmod k)$ in which case $h_{l j}=1$. If T denotes the transpose, we then have from (5)

$$
\begin{aligned}
& (\pi k)^{-s} \Gamma^{2}(s / 2) Z_{h}(s) \\
& \quad=v_{0}^{T}(s, h) v_{0}(s, h)=\left\{A v_{h}(1-s, 0)\right\}^{T} A v_{h}(1-s, 0) \\
& \quad=v_{h}(1-s, 0)^{T} H v_{h}(1-s, 0)=(\pi k)^{s-1} \Gamma^{2}(\{1-s\} / 2) Z_{h}^{*}(1-s)
\end{aligned}
$$

by a direct calculation and the fact that $Z(s ; h / k, 0)=Z(s ;(h+k) / k, 0)$. This then proves (3).

It is clear from our remarks on $Z(s ; g, h)$ that $Z_{h}^{*}(s)$ has a double pole at $s=1$. Also, if $h \equiv 0\left(\bmod \frac{1}{2} k\right)$ when k is even, or if $h \equiv 0(\bmod k)$ when k is odd, the coefficient of $(s-1)^{-2}$ in the Laurent expansion of $Z_{h}(s)$ about $s=1$ is easily seen to be $4 k$. However, for other integral values of h, the coefficient of $(s-1)^{-2}$ is

$$
\sum_{l=1}^{k} 4 e^{2 \pi i l(2 h) / k}=0
$$

In general, the constant term in the Laurent expansion of $Z(s ; g, h)$ about $s=1$ is a function of g. Thus, $Z_{h}(s)$ may have a simple pole at $s=1$ or might be analytic at $s=1$. Since $Z(s ; g, h)$ is entire if h is not an integer, then clearly $Z_{h}(s)$ is entire as well, and this completes the proof.

We now show that Rademacher's result (1) is a special case of (3). Put $h=0$ in (3). It is readily seen that $Z(s ; l / k, 0)=Z(s ;(k-l) / k, 0)$. Hence $Z_{0}(s)=Z_{0}^{*}(s)$. Now for $\sigma>1$,

$$
\begin{aligned}
Z_{0}(s) & =\sum_{l=1}^{k} Z^{2}(s ; l / k, 0)=k^{2 s} \sum_{l=1}^{k}\left\{\sum_{m}^{\prime}|m k+l|^{-s}\right\}^{2}=k^{2 s} \sum_{l=1}^{k}\left\{\sum_{n=l(k)}|n|^{-s}\right\}^{2} \\
& =k^{2 s} \sum_{l=1}^{k}\left\{\sum_{n>0 ; n \equiv l(k)} n^{-s}+\sum_{n>0 ; n=-l(k)} n^{-s}\right\}^{2}=k^{2 s} Z(s),
\end{aligned}
$$

and hence (3) reduces to (1).

References

1. Paul Epstein, Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann. 63 (1907), 205-216.
2. Hans Rademacher, On the Hurwitz zetafunction, Report of the Institute in the Theory of Numbers, University of Colorado, Boulder, Col., 1959, pp. 73-77.

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

