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THE GAME QUANTIFIER1

YIANNIS N. MOSCHOVAKIS

Abstract. For structures that satisfy certain mild definability

conditions we show the following result: A relation R(xlt • ■ ■ , xn)

has a positive first order inductive definition iff for some first order

ß(v. xu ■ ■ ■ , xn),

R(xi, ■ ■ ■ , xn)

0(VVi3y,Vy33y4 • • -)WQ({yi, ■ ■ ■ ,yk), Xl, ■ ■ ■ , x„).

This yields easily some of the basic results about inductive defin-

ability, e.g., the existence of a universal inductively definable set.

The theory of hyperarithmetical relations on the integers has been

generalized to arbitrary first order structures in [5], [6]. Most of the known

characterizations of hyperarithmeticalness hold in the abstract; however

the basic Suslin-Kleene theorem holds only for countable structures

(Barwise-Gandy-Moschovakis [1], Moschovakis [7]) while in general the

hyperprojective subsets of a structure are a proper subclass of the Aj sets.

Because of this there has been no simple syntactical characterization of the

hyperprojective sets. We give here such a characterization using infinite

strings of alternating quantifiers in the manner of Keisler [3].

According to the normal form theorem (Kleene [4]), each H\ relation

on co is obtained by a single application of the Suslin quantifier (the dual

of the classical operation A) to an arithmetical (or even recursive) relation:

0j  R(xi> ■ • • (Sv)ß(y, x1; • ■ • , xn)

<=> (Vy!Vy2Vy3Vy4 • ■ •)(3fc)g(0'i, • • • , yk), xu ■ ■ ■ , xn).

It is rather amusing and easy to prove that we get another normal form for

IlJ relations if we use the game quantifier instead, i.e. if we change every

other V to 3:

R(xu ••• ,xJo (Sy)ß(y, xlt ■ ■ ■ , xn)

o (Vyi3y2Vy33j4 • • 0(3^)0«>'i. ■ ■ ■ , y^, xx, ■ ■ ■ , xn).
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(Of course we must give a correct interpretation to the infinite alternating

string in (2); see §1.) Now (1) and (2) make sense not only on the integers

but over any structure in which we can define codings for tuples, in par-

ticular, any acceptable structure 91 in the sense of Moschovakis [7]. For

some of these structures the Suslin quantifier preserves first order defin-

ability, because we can code infinite sequences by single elements of the

structure. This is in fact true for the standard model of second order

number theory with domain <o U am which provided the initial motivation

for studying hyperprojective relations. The game quantifier however goes

beyond first order definability and gives a normal form for the abstract

analog of H\.

Definition. Let 91 = (A, Ru • • • , Rt,fi, • • ■ ,fm) be acceptable. A
relation R(xlt • • • , xn) on A is S, if for some (first order) definable (with

parameters from A) relation Q(y, xit • • ■ , xj,

(3) R(xu - • • , xn) o (Sy)ß(y, xu ■ ■ ■ , xn).

Main Result. Let 91 be acceptable. The S, relations on A are precisely

the inductively definable (or semihyperprojective) relations on A.

One can easily piece together a proof of this result using the techniques

developed in [5] and in particular the game-theoretic characterization of

semihyperprojectivity given in §19 of that paper. The point of this note is

that we give a direct and elementary proof of the normal form (3) for

inductively definable relations, a proof that does not depend on the

complicated calculus of hyperprojective functions developed in [5]. In §3

we indicate how this can be used to give fairly direct proofs of the basic

theorems about inductive definability, e.g. the existence of a universal

inductively definable set.

To save space, we shall assume the notation and terminology estab-

lished in §1—§3 of [7]. The result of that paper however is not essential for

understanding the main argument in this note.

1. Elementary transformations. The operator S on an acceptable

structure can be immediately understood as quantification over all count-

able sequences in A:

(Sy)ß(y)o(V/e °M)(3/c)ß«/(l), • • > ,f(k))).

To interpret (Sy)ß(y), consider the infinite two-player game where the

first player (call him V) chooses yu the second player (call him 3) chooses

y2, then V chooses y3, then 3 chooses y4, etc. ad infinitum, and 3 wins iff

for some k, Q({yx,    -, yk)). Put

(4) (Sy)ß(y) <=> 3 has a winning strategy.

Strategies are functions on finite tuples from A to A. If a * t is the play



1972] the game quantifier 247

resulting when V's strategy a is pitted against 3's strategy r\ we can

rewrite (4) as

(5) (SjOßOO o (3r)(Vcr)(3A:)Ö«cr * r(l), • • • , a * r(Jk)».

This game is open in the terminology of Gale-Stewart [2] and by the basic

result of that paper it is determined, i.e. either V or 3 must have a winning

strategy. Thus we can also write

(6) (Sy)ß(y) o (Vff)(3T)(3*)ß«cr * r(l), • • •, a * r(k))).

Another easy consequence of the Gale-Stewart theorem is that

* (ßy)Q(y) <=> (s» ~> ÖO0,

where S" is the dual quantifier defined by

(S»ß(J)<^(3y1Vy23y3Vy4 • • • • ■ ,)>*».

It is easy to verify the following equivalences. (Recall from [7] that if

Seq (x), then K(x) is the length of the sequence that x codes and (x)4

(1 ^ / ^ ATx)) is the ith term of that sequence.)

(7) (§x)P(x) & (Sy)ß(y) o (Sx)(Sy)[P(x) & ß(y)].

(8) (Sx)P(x) v (Sy)ß(y) o (Sx)(Sy)[P(x) v Q(y)l

(9) (Vx)P(x) o (Sjc) [Seq (x) & ATx) ̂  1 &

(10) (3x)P(x) o (Sx)[Seq (x) & 7Y(x) = 2 & P((x)2)].

(11) (Sx)P(x) o (Sx)ß(x),

where

ßW <^ Seq (x) & K(x) is odd & P«(x)ls (x)3> • • • , (x)KW)).

(§x)(Sy)P(x,y)o(<3z)Q(z),

where

Q(z) o {Seq (z) & (3m < ATz))[m is even & P(((z)l5 • • • , (z)J,

• • • > (zki»i))]}

V {Seq (z) & (3m < K(z))[m is odd &P«(z)1, • • • , (z)m),

<00m+2, • • • , (*)*<,)»]}.

From these it follows immediately that the class of S, relations on an

acceptable structure contains all definable relations and is closed under the

operations &, v, V, 3, S, S.



248 Y. N. MOSCHOVAKIS [January

2. The main argument. Following §3 of [7], a relation R(xu ■ ■ • , xX

on A is inductively definable iff for some definable f(x1,---, xn),

(13) R(Xl,       xn)of(Xl, •••,xB)eUP5
l

where the sets Pf are defined inductively x e Pf o P(x, U>/<? Pn) relative

to a given first order formula P(x, S) with only positive occurrences of S.

If R(xt, ■ • ■ , xn) is S, satisfying (3) with a definable Q, it is easy to

verify that R satisfies (13) with

P(x, S) <=> (3z)(3w)[x = <z, w) & Seq (w) & ATw) = n & Seq (z)

& {ß(z, Mi,        WÖ V [ATz) is even & (Vr)(z * «) 6 S)]

V [ATz) 0 odd & (3r)(2 * (t) e 5")]}],

/Oi, •••,x«)fp<i-, (% ■ • • ,*„)).

(Recall that 1 codes the empty sequence.)

To prove the converse, we first notice that each first order P(x, S) with

only positive occurrences of S can be put in the form

(14) P(x, S)o(Qz)C*y)[D(x, z,y)=>ye S],

where D{x, z, y) is first order and Q is a finite string of quantifiers. (This

can be shown easily by putting P(x, S) in prenex normal form and then

putting the matrix in conjunctive normal form.) Now let P™ = \J^P^

and notice that

x £PM<=>(<rz)(3y)[i)(x, z, y)8cytP™],

where Q" is the string dual to Q; if we apply the same equivalence to the

clause y ^P°° within the brackets, we get

xctP«>o (Q"z1)(3yi)(Q2^2)(3>'2)[F'(x, Zl,y1) & D(yu z2, y2) & y%ff\.

A few more expansions of this form suggest the extrapolation to the infinite

x&P™
(151
V  '   o (Q Zi)(3yi)(Q z2)(3y2) ■ • ■ [D(x, z, yj & D(yu z2, y2) & ■ ■ •],

where Px does not occur on the right anymore. A rigorous proof of

direction => of (15) is easy. To give a rigorous proof of direction <=,

assume that the right-hand side holds for some xeP™ and work for a

contradiction. For some | = £(x) we have x e P* so that

(16) (QzXVy)D(x, z,y)=>ye Uf

this means that in the V-3 finite game that determines the truth of (16),

3 has a winning strategy, call it ax. Now let playerV follow this strategy ax
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against 3's winning strategy in the game determined by the right-hand side

of (15). After a finite number of moves we obtain a finite sequence zu Vi

such that on the one hand D(x, r,, yx) and on the other D(x, Zu ^1)

y\e Ui<f(«i pn> so that for some v = £(yi) < £(•*) we have yieP"-

We now repeat the argument with y, in the place of x and so on ad infini-

tum, so that we get an infinite descending chain of ordinals £(x) >

f CVi) > £(^2) > " " " , which is the desired contradiction.

Taking the negation on the left and the dual on the right of (15), we have

(17)   xero (Q^Vy^Vy, • • -)(3k)[D(x, Zl, yf) V UOVx, t», yjll

since Q could have been chosen to be an alternating string beginning and

ending with 3,(17) implies almost immediately that Px and hence R is Sx.

3. Consequences. A set X is universal for a class j? of subsets of A

if Xg r and each set in T is of the form {x:(a, x) e X} for some a e A.

Suppose there is a class (T of definable relations on A which contains the

relations defined by quantifier free formulas, which contains the relations

x e N, Seq (x), m :_ n, which is closed under &, v, (3m < «) and sub-

stitution of the functions {xu ■ • ■ , xk), {x)t and such that the class of sets

(unary relations) in J has a universal set. The transformations in §1 then

show easily that the class of S, sets has a universal set. In many cases such

classes ff are well known, e.g., for the standard model of second order

number theory we can take if = 2?. That there is such a for each accept-

able structure follows easily from some of the elementary results about

prime computability in [5]. Thus for each acceptable 91 there is a universal

S, set, hence a universal inductively definable set. One can now assign

ordinals to the elements of this set and then prove a prewellordering

theorem like Theorem 7 of [5] using directly an inductive definition (cf.

the proof of Lemma 2.6 in [1]). This is sufficient to yield by standard

methods most of the basic results about inductively definable relations,

including reduction for S,, a hierarchy on St n S^, etc.

References

1. K. J. Barwise, R. O. Gandy and Y. N. Moschovakis, The next admissible set,

J. Symbolic Logic 36 (1971), 108-120.

2. D. Gale and F. M. Stewart, Infinite games with perfect information, Contributions

to the Theory of Games, vol. 2: Ann. of Math. Studies, no. 28, Princeton Univ. Press,

Princeton, N.J., 1953, pp. 245-266. MR 14, 999.

3. H. J. Keisler, Finite approximations of infinitely long formulas, Proc. Internat.

Sympos. Theory of Models (Berkeley, Calif., 1963), North-Holland, Amsterdam, 1965,

pp. 158-169. MR 34 #2464.



250 Y. N. MOSCHOVAKIS

4. S. C. Kleene, Hierarchies of number-theoretic predicates, Bull. Amer. Math. Soc.

61 (1955), 193-213. MR 17, 4.
5. Y. N. Moschovakis, Abstract first order computability. I, II, Trans. Amer. Math.

Soc. 138 (1969), 427-504. MR 39 #5362.
6. -, Abstract computability and invariant definability, J. Symbolic Logic 34

(1969) , 605-633.
7. -, The Suslin-KIeene theorem for countable structures, Duke Math. J. 37

(1970) , 341-352.

Department of Mathematics, University of California, Los Angeles, Cali-

fornia 90024


