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CONSTRUCTING SEQUENCES OF DIVIDED POWERS1

kenneth newman

Abstract. In my Sequences of divided powers in irreducible,

cocommutative Hopf algebras, I demonstrated the existence of ex-

tensions of sequences of divided powers over arbitrary fields, if

certain coheight conditions are met. Here, I show that if the

characteristic of the field does not divide n, every sequence of divided

powers of length n — 1, in a cocommutative Hopf algebra, has an

extension that can be written as a polynomial in the previous

terms. (An algorithm for finding these polynomials is given,

together with a list of some of them.) Furthermore, I show that

if one uses this method successively for constructing a sequence of

divided powers over a primitive, the only obstructions will occur

at powers of the characteristic of the field.

Some of the basic definitions of this paper are the following:

(1) If // is a Hopf algebra and 0 ^ g e H, then g is a grouplike if

Ag =g®g.
(2) If h g H, then h is a primitive if M — h ® 1 + 1 ® h.

(3) A Hopf algebra will be called irreducible if every nontrivial sub-

coalgebra contains a fixed, nontrivial subcoalgebra, i.e., if //is irreducible,

the identity is the unique grouplike.

(4) An irreducible Hopf algebra will be called graded, if there exists a

set of subspaces {//j,™ 0 sucn tnat

(a) H=@T=0Hi;

(b) H0=l-k;

(c) A/7, c 0U#,®#w5
(d) Hi ■ H, c Hi+j.

(5) A sequence of divided powers °x = 1, lx, 2x, ■ • • , nx is a set of

elements in a cocommutative, irreducible Hopf algebra such that A'x =

2Lo '* ® '~l'*> f°r all 0 ^ t ^ n.
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(6) n+1x will be called an extension of the sequences of divided powers

"x = l,1x,2x, • • ■ , nx, if °x = 1,*x, 2x, ■ ■ ■ , nx, n+1x is also a sequence

of divided powers.

Fact.   An irreducible cocommutative bialgebra is a Hopf algebra.

Proof.  Proposition 9.2.5, p. 196 of [3].

Notation. Throughout the remainder of this paper, H will be an

irreducible, cocommutative, commutative Hopf algebra over a field k. H

will have argumentation e, diagonalization A, and identity 1. All tensor

products will be over k.

Let Jn a k[Xx, X2, • • • , Xn] and make it into a graded Hopf algebra

via AXi = 2i=o Xt ® AV3- (where X0 a 1), and e(Xj) = 0 for 1 <? i ^ w,

and deg    = i for 0 j£ i £g

Note that /„ is an irreducible, cocommutative, commutative Hopf

algebra with 1, Xu X2, • • • , Xn forming a sequence of divided powers.

Definition. Let M = Yl^t* be a monomial in J„. The largest i such

that f4    0 will be called the index of M.

Lemma 1. In Jn, the only monomial with index ^ r that contains

T = (XJi=i X$<) ® X$r, tr > 0, in its diagonalization with a nonzero

coefficient is M = \~]_l=i Xp.

Proof. It is clear that no monomial with index less than r can contain

Fin its diagonalization. Assume N = XTi=i X?' contains Fin its diagonali-

zation. Now AN = XII=i (2*=o Xt ® Xf^f* (where X0 = 1) and,
therefore, the only term in the expansion of A A with only X/s on the

right-hand side and no Xr's on the left-hand side is Xf) ® X?*-

Therefore ut = rj; / = 1, 2, • • • , r, and N — M.

Theorem 2. In Jn_x over Q (the rationals), the sequence of divided

powers 1, Xu X2, ■ • • , Xn_x can be extended uniquely by a homogeneous

polynomial, Pn(X), of degree n. The coefficients of this polynomial will be

in Z[\/n]. In fact, if M is a monomial in Pn(X) with index r, its coefficient

will be in Z[\jp1p2 ■ ■ ■ ps] where the pt are the prime factors of n such that

n\r ^ />;. In particular, if r is larger than the largest nontrivial divisor of n,

its coefficient will be in Z.

Proof. By Corollary 13.0.3, p. 278 of [3], any irreducible, cocom-

mutative Hopf algebra H over a field of characteristic 0 is generated as an

algebra by its primitives. Assume H is graded. Then each homogeneous

component of each primitive is a primitive and we can say that H is

generated by homogeneous primitives. Now consider It is generated by

homogeneous primitives and, therefore, there must exist a homogeneous

primitive containing Xn as one of its terms. This primitive must, perforce,

be of the form: X„ — Pn(Xx, X2, ■ ■ ■ , Xn_^j. Since Xn is an extension of
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1, Xx, X2, ■ ■ ■ , Xn_x, and Xn — Pn(Xx, X2, • ■ ■ , Xn_x) is a primitive it

follows that Pn(Xu X2, ■ ■ ■ , Xn_i) will be the desired extension in Jn_x.

We now investigate the coefficients of Pn(X). First, we show that the

coefficient of Xp* in Pn(X) (for 11 n) will be (-l)n/i(iln).

Since Pn(X) is an nth divided power of 1, Xx, X2, • ■ • , Xn_x, APn(X)

contains the term X{ ® Xn_{. A little thought will make it evident that the

factors of a monomial containing Xt ® Xn_t in its diagonalization must be

Xt and Xn_(, i.e., the unique monomial containing X{ ® Xn_{ in its diag-

onalization is X{Xn_i. Therefore, the coefficient of Ar,-Arn_< is I.

Now, the diagonalization of XiXn_i contains the term Xf ® Xn_2i.

Since this term does not appear in APn(X), it must be cancelled by terms

in the diagonalization of other monomials in Pn(X). Again, a little

thought will show that for a monomial to contain Xf ® Xn_2i in its

diagonalization, it must contain as factors, combinations of X{, Xn_2i

and Xn_f. By checking all the possibilities, one can see that the only

monomial other than XfX^ that contains X? ® Xn_u in its diagonaliza-

tion is XfXn_2i. Therefore, the coefficient of X2Xn_2i is —1. Now,

A(—XfXn_2i) contains the term —X? ® Xn_3i and in a similar way to the

above, we can show that the coefficient of XfXn_3i is +1.

Continuing in this manner, we find that the coefficient of Xin/i)~2X2i is

(_l)<«/i)-i_ since its diagonalization contains the term X^'1 ® Xt,

the coefficient of Xp1 (which contains the term (n//)^*'41-1 ® X{ in its

diagonalization) must be (—1)"/! (;'/«).

To complete the proof, we show that the coefficient in Pn(X) of M =

JJi=1 X*' (tr 0 and some tt ^ 0, 1 ^ / ^ r), a monomial of degree n,

is an integral combination of the coefficients in Pn{X) of larger monomials.

(We say one monomial is "larger" than another if its index is larger.)

We will do this by (1) finding a term in AM, other than M ® 1 or 1 ® M,

with coefficient one that occurs elsewhere only in the diagonalization of

larger monomials. (2) Since the coefficient of every term in APn(X) —

1 ® Pn(X) — Pn(X) ® 1 is either zero or one, (3) descending induction

(on the index of the monomial) will complete the proof.

(1) A term in AM is T = (ITti Xft ® xrr and one can check that

it has coefficient one. By Lemma 1, every monomial other than M, that

contains T in its diagonalization, must be larger than M.

(2) So let {Mi}iEl be the set of monomials larger than M in let b{

be the coefficient of Tin AM,, and let c{ be the coefficient of Mj in Pn{X).

Then e = c + 2,-sj CA where e is the coefficient of T in APn(X) (either

zero or one) and c is the coefficient of M in Pn(X).

(3) Now all the c/s are in Z\\\pxp2 ■ ■ ■ ps] where the p{'s are the prime

factors of n such that njr 5: p{. (If Mi is of the form Xf we proved this

statement above, and if M, is not of this form it is true by the induction
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hypothesis. Note that we showed, en passant, that the coefficient of the

largest monomial, Xn_1X1, is one.) Therefore, since all the b/s are

integers, it follows that c is in Z[\jp1p2 ■ ■ • ps].

Uniqueness is cleaf, since we have found the unique possible coefficient

of each monomial in Pn(X). Q.E.D.

Remark. We give here an algorithm to find the P^s as defined in the

previous theorem. The algorithm is derived from methods used in the

proof of the theorem and is not specifically proved.

In Pn :

(a) the coefficient of X?1 is (-l)n/*(//«) (!</<« and i | «);

(b) the coefficient of X(Xn_( is 1 (1 = / < n/2);

(c) the coefficient of M = JJi=i Xi' (fr 0, M not of the form (a) or

(b)) will be minus the sum of the coefficients of monomials of the form:

JlUi Xi*  with  us # 0, 2r > s > r, ux + ur+i = tt (l£i< r), and
ys u = t

In Table I, I have listed the first seven polynomials (of degree 2-8).

It is interesting to empirically observe (though I can not explain it), that

the coefficient of a term is positive, if the sum of its exponents is even and

vice versa. (I have found this to be true for all the /„'s I have computed,

up to n = 20.)

Table 1

The polynomial of degree n (« = 2, • • • , 8) which will extend the

sequence of divided powers 1, Xx, X2, ■ ■ ■ , Xn_x in 3n_x.

n=2 %X\.

n = 3 X2XX - ^Xl

n = 4 X3X, + \X\ - X2X\ + \X\.

n = 5 XtXx + X3X2 — X3X\ — X\XX + X2X\ — \X\.

n = 6 A^X, + X4X2 — XtXl + JX2 — 2X3X2X1 + X3X\

n = 1      X§X-[ -\~ XkiX2 — X^X-^ 4~ X^X2 — 2X4X2Xi 4* X^X^

— x\x± — X3X\ + 3X3X2X\ — X3X\

+ X2Xt — 2X2XX + X2XX yXj.

1 = 8      X7XX + X6X2 — XeX2 + X&X3

— 2XiX2X1 4- X5Xf + \X\ — 2X,iX3X1

— X 4X 2 ~\~ 3X^X2Xi — X\X±    X3X2

+ UXtXl + 3X3X22XX - 4X3X2X\

+ X3X\ + \X\ — 2X2Xi + 2^X2XX

— X2X\ + \x\.
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Corollary 3. Let char A; = a (a either 0 or positive). If °x = I,

xx, ■ ■ ■ , n~xx is a sequence of divided powers in H, then the sequence can be

extended by a polynomial in xx, 2x, ■ • • , n~xx if ajfn or if a = 0.

Proof. Consider Jn_x over k. Define a Hopf algebra map % between

/„_, and H via Xt -*■ ix. By the theorem the coefficients of Pn{X) are

in Z[l/«] and therefore Pn(X) can be written in Jn_x. The image of Pn(X)

under % will be the desired extension of 1, 1x, • • • , n~xx. Q.E.D.

Note that if a > 0, the coheight (in the sense of [1]) of the extension

will be the same as the coheight of nx.

Corollary 4. Assume char k = p > 0. If °x = 1, lx, • • • , mx and

°y = 1, xy, • • • , ny are 2 sequences of divided powers such that lx = *y,

0 < i _ t, and if °x, lx, ■ • • , mx can be extended to tvx, then °y, 1y,

• • • , "y can be extended to tvy by polynomials in xx, 2x, • ■ ■ , tpx,
ly, 2y, ■ ■ ■, ny-

Proof. Assume inductively that we have extended °y, 1y, • • • , ny to

°y, xy, " ' ' > u~xy, " < " = tp, using polynomials in xx, 2x, • ■ ■ , tpx,

1y, 2y> ' " ' , "y. If p\u, then we can extend again using Corollary 3. So

assume u = rp,r<:t. Let / = k[Xx, X2, ■ ■ ■ , Xrv, YM, Yi+2, ■ ■ ■ , F^_J

where e(Xt) = e(r4) = 0 (/1), AX, = Ti-i*i ® Xi-i> and AT, =
2U 7* ® (letting T0 = A0 = 1 and 'Xj = JT, if i = 0. Consider
F«( Y) — Pr„(X) + Xrv. Since Yt = A; (i _ r) all monomials have index

greater than t and t _ r. According to the theorem, the coefficients

of such monomials in Prv(X) are in Z\\\pxp2 ■ ■ ■ ps] where the p/s are

the prime factors of u less than p. Therefore, we can write Prp(Y) —

Pn(X) + Xrv in /. Since XrP - P„(X) is a primitive, Prp(Y) - Prp(X) +

Xrp will be an extension of I, Yx, Y2, • ■ • , Yrv_x in /. Now map J—*- H

via Xt -+ *x and F< 4y. The image of Prp(Y) - PrP(X) + Xrp will be

the desired extension. Q.E.D.

We have shown that if His an irreducible, cocommutative, commutative

Hopf algebra over a field of characteristic p > 0, an extension to any

sequence of divided powers of length n — 1 can be constructed if p \ n. If

p I n, this is not, in general, true. However, if we start with a primitive,

use the F„'s of Theorem 2 to construct a.p — 1 length sequence, and if, in

some manner, we can find a pth divided power, we can then use the Pn's

to construct a p2 — 1 length sequence. Further, if we can now find a p2

divided power, the F„'s allow us to construct a p3 — 1 sequence. This

process may be continued indefinitely. In other words, obstructions can

only arise at pnth divided powers, not at every np divided power. This is

the import of Theorem 7 and Corollary 8, below. First, however, we need

the following:
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Lemma 5. Let n be any positive integer greater than one, and p any prime.

Then there exists a, 1 _ a < n, such that p\ ("), if n is not a power of p.

If n is a power of p, there exists a, 1 ^ a < n, such that p^JfQ).

The proof is trivial.

Definition 6. (a) Let p be a prime. If n is a power of p, Pnp = Xn.

If n is not a power of P, define Pn p inductively by substituting Pip for

Xi(i=\,2,--- ,n-\) mPn.

(b) Make k[X1, X^,, ■ ■ • , Xpm] into a graded Hopf algebra via

AXV< = 2to Pi., ® P^i.v (with P0.P = 1), c(Xpi) = 0 and deg Xpi = p\

Note that 1; PliP; Pi,,; • • • is a sequence of divided powers and that

Pi v is homogeneous of degree i. The k[Xx, Xp, ■ • • , XPm] are isomorphic

to the familiar Witt Hopf algebras. See Theorem 2.23, p. 70 of [2].

Theorem 7. For any n and any prime p, the coefficients of P„i3, as a

polynomial in Xu Xp, ■ • ■ , Xpm (pm ^ n < pm+1) are in

Z„ - Z[l/2, 1 ß, 1/5, • • •', (jp, • • •].

Proof. Assume inductively that the theorem is true for PiiP, i < n,

and that n is not a power of p (otherwise, the theorem is clear). Let % be

the natural map:

ZpLYl, XP, • • ■ , Xpm\ —> k[Xx, Xp, • • • , Xpm\

where k is any field of characteristic p. Since we have assumed that the

Pt.vs 0 < n) are m ^[Z], we can use them to define a sequence of

divided powers, 1, %(PliV), ̂ (A.j,), • •;, x(Pn-i.J in k[X]. By Theorem 2

and Sublemma 3 of [1], 1, x(PiJ, %(Pi.v), x(Pn-i,v) has an exten-

sion in k[X]. Call the homogeneous component of degree n of that

extension (which is also an extension) E. We will show that x(Pn.p) = E

(and in the process show that % is well defined on PntP, i.e., the coefficients

of Pn_p are in Zp).

Let M = Yli=i Xpi be a monomial of degree n and index pr. Assume

its coefficient is c in Pn P and c' in E. We want to show that %{c) = c'.

Assume that this statement is true for all monomials larger than M. (This

set may be vacuous.) If M is of the form Xl;r, let T = X%, ® X*f*, where

a is the integer found in Lemma 5 for n = tr. If M is not of this form, let

T = (IJd X%) ® Xv\. Among the monomials of degree n, T will occur

only in the diagonalization of M or terms of larger degree. (If T is of the

first form, the statement is clear. Otherwise, use a slight modification of

Lemma 1.) Remember APn.P = P„,„ ® 1 + 1 ® Pn_p + Pt.v ® Pn-i.v

and AE = E ® 1 + 1 ® E + 2?-i x(PiJ ® X(P«-tJ- Therefore, e, the
coefficient of T in APn P is in Zp, and %(e) is the coefficient of T in AE.

Now let {M,)iEl be the set of monomials of degree n larger than M. Let
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the coefficient of Mt in P„iP be ci; and let the coefficient of Pin AMi be

Z>;. Then, e = cb + 2m CA> where we have let b be the coefficient of T

in AM. It is clear that each b{ e Z. Also by the second induction hypothesis,

we know that each c( e Z„ and that if c- is the coefficient of Mt in E,

%(c{) = c'i. Therefore cb eZv and %(cb) = c'b. If M = Xvrr and rr is not

a power of then b = ('/) which we assumed not to be divisible by p.

Therefore b e ZB, cb e ZP => c e Z,, and %(c) = c'. If M = Jf tr a power

of p, then c6 = 0 (mod /?). But we assumed that b = (*ar) was not divisible

byp2. Therefore, the denominator of c is not a multiple of p, i.e., c eZv

and ^(c) = c'. And lastly, if M is not of the form Xlvrr, b = 1 and we are

done.

Corollary 8. If x is a primitive in H, then a sequence of divided power

can be constructed over x using the polynomials defined in Definition 6(a).

The obstructions can only occur at powers of p.

Proof.   Similar to Corollary 3, using Theorem 7 instead of Theorem 2.
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