CONSTRUCTING SEQUENCES OF DIVIDED POWERS1

KENNETH NEWMAN

ABSTRACT. In my Sequences of divided powers in irreducible, cocommutative Hopf algebras, I demonstrated the existence of extensions of sequences of divided powers over arbitrary fields, if certain coheight conditions are met. Here, I show that if the characteristic of the field does not divide n, every sequence of divided powers of length n-1, in a cocommutative Hopf algebra, has an extension that can be written as a polynomial in the previous terms. (An algorithm for finding these polynomials is given, together with a list of some of them.) Furthermore, I show that if one uses this method successively for constructing a sequence of divided powers over a primitive, the only obstructions will occur at powers of the characteristic of the field.

Some of the basic definitions of this paper are the following:

- (1) If H is a Hopf algebra and $0 \neq g \in H$, then g is a grouplike if $\Delta g = g \otimes g$.
 - (2) If $h \in H$, then h is a primitive if $\Delta h = h \otimes 1 + 1 \otimes h$.
- (3) A Hopf algebra will be called irreducible if every nontrivial subcoalgebra contains a fixed, nontrivial subcoalgebra, i.e., if H is irreducible, the identity is the unique grouplike.
- (4) An irreducible Hopf algebra will be called graded, if there exists a set of subspaces $\{H_i\}_{i=0}^{\infty}$ such that
 - (a) $H = \bigoplus_{i=0}^{\infty} H_i$;
 - (b) $H_0 = 1 \cdot k$;
 - (c) $\Delta H_i \subset \bigoplus_{j=0}^i H_j \otimes H_{i-j}$;
 - (d) $H_i \cdot H_j \subset H_{i+j}$.
- (5) A sequence of divided powers ${}^{0}x = 1$, ${}^{1}x$, ${}^{2}x$, \cdots , ${}^{n}x$ is a set of elements in a cocommutative, irreducible Hopf algebra such that $\Delta^{t}x = \sum_{i=0}^{t} {}^{i}x \otimes {}^{t-i}x$, for all $0 \le t \le n$.

Received by the editors December 8, 1970.

AMS 1970 subject classifications. Primary 16A24.

Key words and phrases. Coheight, irreducible Hopf algebra, sequence of divided powers.

¹ This paper is similar to a portion of my doctoral dissertation written under the direction of Professor Stephen U. Chase. I also would like to thank Professor M. E. Sweedler for his many valuable suggestions.

(6) ^{n+1}x will be called an extension of the sequences of divided powers $^{0}x = 1, ^{1}x, ^{2}x, \cdots, ^{n}x$, if $^{0}x = 1, ^{1}x, ^{2}x, \cdots, ^{n}x, ^{n+1}x$ is also a sequence of divided powers.

FACT. An irreducible cocommutative bialgebra is a Hopf algebra. PROOF. Proposition 9.2.5, p. 196 of [3].

NOTATION. Throughout the remainder of this paper, H will be an irreducible, cocommutative, commutative Hopf algebra over a field k. H will have argumentation ϵ , diagonalization Δ , and identity 1. All tensor products will be over k.

Let $J_n \equiv k[X_1, X_2, \cdots, X_n]$ and make it into a graded Hopf algebra via $\Delta X_i = \sum_{j=0}^i X_j \otimes X_{i-j}$ (where $X_0 \equiv 1$), and $\epsilon(X_j) = 0$ for $1 \leq i \leq n$, and deg $X_i = i$ for $0 \leq i \leq n$.

Note that J_n is an irreducible, cocommutative, commutative Hopf algebra with 1, X_1 , X_2 , \cdots , X_n forming a sequence of divided powers.

DEFINITION. Let $M = \prod X_i^{t_i}$ be a monomial in J_n . The largest i such that $t_i \neq 0$ will be called the index of M.

LEMMA 1. In J_n , the only monomial with index $\leq r$ that contains $T = (\prod_{i=1}^{r-1} X_i^{t_i}) \otimes X_r^{t_r}, \ t_r > 0$, in its diagonalization with a nonzero coefficient is $M = \prod_{i=1}^r X_i^{t_i}$.

PROOF. It is clear that no monomial with index less than r can contain T in its diagonalization. Assume $N=\prod_{i=1}^r X_i^{u_i}$ contains T in its diagonalization. Now $\Delta N=\prod_{i=1}^r (\sum_{j=0}^i X_j \otimes X_{i-j})^{u_i}$ (where $X_0\equiv 1$) and, therefore, the only term in the expansion of ΔN with only X_r 's on the right-hand side and no X_r 's on the left-hand side is $(\prod_{i=1}^{r-1} X_i^{u_i}) \otimes X_r^{u_r}$. Therefore $u_i=t_i, i=1,2,\cdots,r$, and N=M.

THEOREM 2. In J_{n-1} over Q (the rationals), the sequence of divided powers $1, X_1, X_2, \dots, X_{n-1}$ can be extended uniquely by a homogeneous polynomial, $P_n(X)$, of degree n. The coefficients of this polynomial will be in Z[1/n]. In fact, if M is a monomial in $P_n(X)$ with index r, its coefficient will be in $Z[1/p_1p_2\cdots p_s]$ where the p_i are the prime factors of n such that $n/r \ge p_i$. In particular, if r is larger than the largest nontrivial divisor of n, its coefficient will be in Z.

PROOF. By Corollary 13.0.3, p. 278 of [3], any irreducible, cocommutative Hopf algebra H over a field of characteristic 0 is generated as an algebra by its primitives. Assume H is graded. Then each homogeneous component of each primitive is a primitive and we can say that H is generated by homogeneous primitives. Now consider J_n . It is generated by homogeneous primitives and, therefore, there must exist a homogeneous primitive containing X_n as one of its terms. This primitive must, perforce, be of the form: $X_n - P_n(X_1, X_2, \dots, X_{n-1})$. Since X_n is an extension of

1, X_1, X_2, \dots, X_{n-1} , and $X_n - P_n(X_1, X_2, \dots, X_{n-1})$ is a primitive it follows that $P_n(X_1, X_2, \dots, X_{n-1})$ will be the desired extension in J_{n-1} .

We now investigate the coefficients of $P_n(X)$. First, we show that the coefficient of $X_i^{n/i}$ in $P_n(X)$ (for $i \mid n$) will be $(-1)^{n/i}(i\mid n)$.

Since $P_n(X)$ is an *n*th divided power of 1, X_1 , X_2 , \cdots , X_{n-1} , $\Delta P_n(X)$ contains the term $X_i \otimes X_{n-i}$. A little thought will make it evident that the factors of a monomial containing $X_i \otimes X_{n-i}$ in its diagonalization must be X_i and X_{n-i} , i.e., the unique monomial containing $X_i \otimes X_{n-i}$ in its diagonalization is $X_i X_{n-i}$. Therefore, the coefficient of $X_i X_{n-i}$ is 1.

Now, the diagonalization of X_iX_{n-i} contains the term $X_i^2\otimes X_{n-2i}$. Since this term does not appear in $\Delta P_n(X)$, it must be cancelled by terms in the diagonalization of other monomials in $P_n(X)$. Again, a little thought will show that for a monomial to contain $X_i^2\otimes X_{n-2i}$ in its diagonalization, it must contain as factors, combinations of X_i , X_{n-2i} and X_{n-i} . By checking all the possibilities, one can see that the only monomial other than X_iX_{n-i} that contains $X_i^2\otimes X_{n-2i}$ in its diagonalization is $X_i^2X_{n-2i}$. Therefore, the coefficient of $X_i^2X_{n-2i}$ is -1. Now, $\Delta(-X_i^2X_{n-2i})$ contains the term $-X_i^3\otimes X_{n-3i}$ and in a similar way to the above, we can show that the coefficient of $X_i^3X_{n-3i}$ is +1.

Continuing in this manner, we find that the coefficient of $X_i^{(n/i)-2}X_{2i}$ is $(-1)^{(n/i)-1}$. Since its diagonalization contains the term $X_i^{(n/i)-1} \otimes X_i$, the coefficient of $X_i^{n/i}$ (which contains the term $(n/i)X_i^{(n/i)-1} \otimes X_i$ in its diagonalization) must be $(-1)^{n/i}$ (i/n).

To complete the proof, we show that the coefficient in $P_n(X)$ of $M \equiv \prod_{i=1}^r X_i^{t_i}$ $(t_r \neq 0 \text{ and some } t_i \neq 0, 1 \leq i \leq r)$, a monomial of degree n, is an integral combination of the coefficients in $P_n(X)$ of larger monomials. (We say one monomial is "larger" than another if its index is larger.) We will do this by (1) finding a term in ΔM , other than $M \otimes 1$ or $1 \otimes M$, with coefficient one that occurs elsewhere only in the diagonalization of larger monomials. (2) Since the coefficient of every term in $\Delta P_n(X) - 1 \otimes P_n(X) - P_n(X) \otimes 1$ is either zero or one, (3) descending induction (on the index of the monomial) will complete the proof.

- (1) A term in ΔM is $T \equiv (\prod_{i=1}^{r-1} X_i^{t_i}) \otimes X_r^{t_r}$ and one can check that it has coefficient one. By Lemma 1, every monomial other than M, that contains T in its diagonalization, must be larger than M.
- (2) So let $\{M_i\}_{i\in I}$ be the set of monomials larger than M in J_{n-1} , let b_i be the coefficient of T in ΔM_i , and let c_i be the coefficient of M_i in $P_n(X)$. Then $e = c + \sum_{i \in I} c_i b_i$ where e is the coefficient of T in $\Delta P_n(X)$ (either zero or one) and c is the coefficient of M in $P_n(X)$.
- (3) Now all the c_i 's are in $Z[1/p_1p_2\cdots p_s]$ where the p_i 's are the prime factors of n such that $n/r \ge p_i$. (If M_i is of the form $X_j^{n/j}$ we proved this statement above, and if M_i is not of this form it is true by the induction

hypothesis. Note that we showed, en passant, that the coefficient of the largest monomial, $X_{n-1}X_1$, is one.) Therefore, since all the b_i 's are integers, it follows that c is in $Z[1/p_1p_2\cdots p_s]$.

Uniqueness is clear, since we have found the unique possible coefficient of each monomial in $P_n(X)$. Q.E.D.

REMARK. We give here an algorithm to find the P_n 's as defined in the previous theorem. The algorithm is derived from methods used in the proof of the theorem and is not specifically proved.

In P_n :

- (a) the coefficient of $X_i^{n/i}$ is $(-1)^{n/i}(i/n)$ $(1 \le i < n \text{ and } i \mid n)$;
- (b) the coefficient of $X_i X_{n-i}$ is 1 $(1 \le i < n/2)$;
- (c) the coefficient of $M = \prod_{i=1}^r X_i^{t_i}$ ($t_r \neq 0$, M not of the form (a) or (b)) will be minus the sum of the coefficients of monomials of the form: $\prod_{i=1}^s X_i^{u_i}$ with $u_s \neq 0$, 2r > s > r, $u_i + u_{r+i} = t_i$ ($1 \leq i < r$), and $\sum_{i=r}^s u_i = t_r$.

In Table I, I have listed the first seven polynomials (of degree 2-8). It is interesting to empirically observe (though I can not explain it), that the coefficient of a term is positive, if the sum of its exponents is even and vice versa. (I have found this to be true for all the P_n 's I have computed, up to n = 20.)

TABLE 1

The polynomial of degree n $(n = 2, \dots, 8)$ which will extend the sequence of divided powers $1, X_1, X_2, \dots, X_{n-1}$ in J_{n-1} .

$$\begin{array}{lll} n=2 & \frac{1}{2}X_{1}^{2}. \\ n=3 & X_{2}X_{1}-\frac{1}{3}X_{1}^{3}. \\ n=4 & X_{3}X_{1}+\frac{1}{2}X_{2}^{2}-X_{2}X_{1}^{2}+\frac{1}{4}X_{1}^{4}. \\ n=5 & X_{4}X_{1}+X_{3}X_{2}-X_{3}X_{1}^{2}-X_{2}^{2}X_{1}+X_{2}X_{1}^{3}-\frac{1}{5}X_{1}^{5}. \\ n=6 & X_{5}X_{1}+X_{4}X_{2}-X_{4}X_{1}^{2}+\frac{1}{2}X_{3}^{2}-2X_{3}X_{2}X_{1}+X_{3}X_{1}^{3}\\ & -\frac{1}{3}X_{2}^{3}+1\frac{1}{2}X_{2}^{2}X_{1}^{2}-X_{2}X_{1}^{4}+\frac{1}{6}X_{1}^{6}. \\ n=7 & X_{6}X_{1}+X_{5}X_{2}-X_{5}X_{1}^{2}+X_{4}X_{2}-2X_{4}X_{2}X_{1}+X_{4}X_{1}^{3}\\ & -X_{3}^{2}X_{1}-X_{3}X_{2}^{2}+3X_{3}X_{2}X_{1}^{2}-X_{3}X_{1}^{4}\\ & +X_{2}^{3}X_{1}-2X_{2}^{2}X_{1}^{3}+X_{2}X_{1}^{5}-\frac{1}{7}X_{1}^{7}. \\ n=8 & X_{7}X_{1}+X_{6}X_{2}-X_{6}X_{1}^{2}+X_{5}X_{3}\\ & -2X_{5}X_{2}X_{1}+X_{5}X_{1}^{3}+\frac{1}{2}X_{4}^{2}-2X_{4}X_{3}X_{1}\\ & -X_{4}X_{2}^{2}+3X_{4}X_{2}X_{1}^{2}-X_{4}X_{1}^{4}-X_{3}^{2}X_{2}\\ & +1\frac{1}{2}X_{3}^{2}X_{1}^{2}+3X_{3}X_{2}^{2}X_{1}-4X_{3}X_{2}X_{1}^{3}\\ & +X_{3}X_{1}^{5}+\frac{1}{4}X_{2}^{4}-2X_{2}^{3}X_{1}^{2}+2\frac{1}{2}X_{2}^{2}X_{1}^{4}\\ & -X_{2}X_{1}^{6}+\frac{1}{8}X_{1}^{8}. \end{array}$$

COROLLARY 3. Let char k = a (a either 0 or positive). If ${}^{0}x = 1$, ${}^{1}x$, \cdots , ${}^{n-1}x$ is a sequence of divided powers in H, then the sequence can be extended by a polynomial in ${}^{1}x$, ${}^{2}x$, \cdots , ${}^{n-1}x$ if $a \nmid n$ or if a = 0.

PROOF. Consider J_{n-1} over k. Define a Hopf algebra map χ between J_{n-1} and H via $X_i \to {}^i x$. By the theorem the coefficients of $P_n(X)$ are in Z[1/n] and therefore $P_n(X)$ can be written in J_{n-1} . The image of $P_n(X)$ under χ will be the desired extension of $1, 1x, \dots, n-1x$. Q.E.D.

Note that if a > 0, the coheight (in the sense of [1]) of the extension will be the same as the coheight of ${}^{n}x$.

COROLLARY 4. Assume char k = p > 0. If ${}^{0}x = 1, {}^{1}x, \cdots, {}^{m}x$ and ${}^{0}y = 1, {}^{1}y, \cdots, {}^{n}y$ are 2 sequences of divided powers such that ${}^{i}x = {}^{i}y, 0 \le i \le t$, and if ${}^{0}x, {}^{1}x, \cdots, {}^{m}x$ can be extended to ${}^{tp}x$, then ${}^{0}y, {}^{1}y, \cdots, {}^{n}y$ can be extended to ${}^{tp}y$ by polynomials in ${}^{1}x, {}^{2}x, \cdots, {}^{tp}x, {}^{1}y, {}^{2}y, \cdots, {}^{n}y$.

PROOF. Assume inductively that we have extended ${}^0y, {}^1y, \cdots, {}^ny$ to ${}^0y, {}^1y, \cdots, {}^{u-1}y, \ n < u \le tp$, using polynomials in ${}^1x, {}^2x, \cdots, {}^{tp}x, {}^1y, {}^2y, \cdots, {}^ny$. If $p \not\mid u$, then we can extend again using Corollary 3. So assume $u = rp, r \le t$. Let $J = k[X_1, X_2, \cdots, X_{rp}, Y_{t+1}, Y_{t+2}, \cdots, Y_{rp-1}]$ where $\epsilon(X_i) = \epsilon(Y_i) = 0$ $(i \ge 1), \ \Delta X_i = \sum_{j=1}^i X_j \otimes X_{i-j}, \ \text{and} \ \Delta Y_i = \sum_{j=0}^i Y_i \otimes Y_{i-j}$ (letting $Y_0 = X_0 = 1$ and $Y_i = X_i$ if $i \le t$). Consider $P_{rp}(Y) - P_{rp}(X) + X_{rp}$. Since $Y_i = X_i$ $(i \le t)$ all monomials have index greater than t and $t \ge r$. According to the theorem, the coefficients of such monomials in $P_{rp}(X)$ are in $Z[1/p_1p_2\cdots p_s]$ where the p_i 's are the prime factors of u less than p. Therefore, we can write $P_{rp}(Y) - P_{rp}(X) + X_{rp}$ in J. Since $X_{rp} - P_{rp}(X)$ is a primitive, $P_{rp}(Y) - P_{rp}(X) + X_{rp}$ will be an extension of $1, Y_1, Y_2, \cdots, Y_{rp-1}$ in J. Now map $J \to H$ via $X_i \to {}^i x$ and $Y_i \to {}^i y$. The image of $P_{rp}(Y) - P_{rp}(X) + X_{rp}$ will be the desired extension. Q.E.D.

We have shown that if H is an irreducible, cocommutative, commutative Hopf algebra over a field of characteristic p > 0, an extension to any sequence of divided powers of length n-1 can be constructed if $p \nmid n$. If $p \mid n$, this is not, in general, true. However, if we start with a primitive, use the P_n 's of Theorem 2 to construct a p-1 length sequence, and if, in some manner, we can find a pth divided power, we can then use the P_n 's to construct a p^2-1 length sequence. Further, if we can now find a p^2 divided power, the P_n 's allow us to construct a p^3-1 sequence. This process may be continued indefinitely. In other words, obstructions can only arise at p^{n th divided powers, not at every np divided power. This is the import of Theorem 7 and Corollary 8, below. First, however, we need the following:

LEMMA 5. Let n be any positive integer greater than one, and p any prime. Then there exists α , $1 \leq \alpha < n$, such that $p \nmid \binom{n}{\alpha}$, if n is not a power of p. If n is a power of p, there exists α , $1 \leq \alpha < n$, such that $p^2 \nmid \binom{n}{\alpha}$.

The proof is trivial.

DEFINITION 6. (a) Let p be a prime. If n is a power of p, $P_{n,p} \equiv X_n$. If n is not a power of P, define $P_{n,p}$ inductively by substituting $P_{i,p}$ for X_i ($i = 1, 2, \dots, n-1$) in P_n .

(b) Make $k[X_1, X_p, \dots, X_{p^m}]$ into a graded Hopf algebra via $\Delta X_{p^i} = \sum_{j=0}^{p^i} P_{j,p} \otimes P_{p^i-j,p}$ (with $P_{0,p} \equiv 1$), $\epsilon(X_{p^i}) = 0$ and $\deg X_{p^i} = p^i$. Note that 1; $P_{1,p}$; $P_{2,p}$; \cdots is a sequence of divided powers and that $P_{i,p}$ is homogeneous of degree *i*. The $k[X_1, X_p, \dots, X_{p^m}]$ are isomorphic to the familiar Witt Hopf algebras. See Theorem 2.23, p. 70 of [2].

THEOREM 7. For any n and any prime p, the coefficients of $P_{n,p}$ as a polynomial in X_1, X_p, \dots, X_{p^m} ($p^m \le n < p^{m+1}$) are in

$$Z_p = Z[1/2, 1/3, 1/5, \cdots, \widehat{1/p}, \cdots].$$

PROOF. Assume inductively that the theorem is true for $P_{i,p}$, i < n, and that n is not a power of p (otherwise, the theorem is clear). Let χ be the natural map:

$$Z_{p}[X_{1}, X_{p}, \cdots, X_{n^{m}}] \rightarrow k[X_{1}, X_{p}, \cdots, X_{n^{m}}]$$

where k is any field of characteristic p. Since we have assumed that the $P_{i,p}$'s (i < n) are in $Z_p[X]$, we can use them to define a sequence of divided powers, 1, $\chi(P_{1,p})$, $\chi(P_{2,p})$, \cdots , $\chi(P_{n-1,p})$ in k[X]. By Theorem 2 and Sublemma 3 of [1], 1, $\chi(P_{1,p})$, $\chi(P_{2,p})$, \cdots , $\chi(P_{n-1,p})$ has an extension in k[X]. Call the homogeneous component of degree n of that extension (which is also an extension) E. We will show that $\chi(P_{n,p}) = E$ (and in the process show that χ is well defined on $P_{n,p}$, i.e., the coefficients of $P_{n,p}$ are in Z_p).

Let $M \equiv \prod_{i=1}^r X_{p^i}^{t_i}$ be a monomial of degree n and index p^r . Assume its coefficient is c in $P_{n,p}$ and c' in E. We want to show that $\chi(c) = c'$. Assume that this statement is true for all monomials larger than M. (This set may be vacuous.) If M is of the form $X_{p^r}^{t_r}$, let $T \equiv X_{p^r}^{\alpha} \otimes X_{p^r}^{t_r-\alpha}$, where α is the integer found in Lemma 5 for $n = t_r$. If M is not of this form, let $T \equiv (\prod_{i=1}^{r-1} X_{p^i}^{t_i}) \otimes X_{p^r}^{t_r}$. Among the monomials of degree n, T will occur only in the diagonalization of M or terms of larger degree. (If T is of the first form, the statement is clear. Otherwise, use a slight modification of Lemma 1.) Remember $\Delta P_{n,p} = P_{n,p} \otimes 1 + 1 \otimes P_{n,p} + \sum_{i=1}^{n-1} P_{i,p} \otimes P_{n-i,p}$ and $\Delta E = E \otimes 1 + 1 \otimes E + \sum_{i=1}^{n-1} \chi(P_{i,p}) \otimes \chi(P_{n-i,p})$. Therefore, e, the coefficient of T in $\Delta P_{n,p}$ is in Z_p , and $\chi(e)$ is the coefficient of T in ΔE . Now let $\{M_i\}_{i\in I}$ be the set of monomials of degree n larger than M. Let

the coefficient of M_i in $P_{n,p}$ be c_i , and let the coefficient of T in ΔM_i be b_i . Then, $e = cb + \sum_{i \in I} c_i b_i$, where we have let b be the coefficient of T in ΔM . It is clear that each $b_i \in Z$. Also by the second induction hypothesis, we know that each $c_i \in Z_p$ and that if c_i' is the coefficient of M_i in E, $\chi(c_i) = c_i'$. Therefore $cb \in Z_p$ and $\chi(cb) = c'b$. If $M = X_p^{t_r}$ and t_r is not a power of p, then $b = {t_r \choose \alpha}$ which we assumed not to be divisible by p. Therefore $b \in Z_p$, $cb \in Z_p \Rightarrow c \in Z_p$ and $\chi(c) = c'$. If $M = X_p^{t_r}$, t_r a power of p, then $cb \equiv 0 \pmod{p}$. But we assumed that $b = {t_r \choose \alpha}$ was not divisible by p^2 . Therefore, the denominator of c is not a multiple of p, i.e., $c \in Z_p$ and $\chi(c) = c'$. And lastly, if M is not of the form $X_p^{t_r}$, b = 1 and we are done.

COROLLARY 8. If x is a primitive in H, then a sequence of divided power can be constructed over x using the polynomials defined in Definition 6(a). The obstructions can only occur at powers of p.

PROOF. Similar to Corollary 3, using Theorem 7 instead of Theorem 2.

BIBLIOGRAPHY

- 1. K. Newman, Sequences of divided powers in irreducible, cocommutative Hopf algebras, Trans. Amer. Math. Soc. 163 (1971), 25-34.
- 2. ——, Topics in the theory of irreducible Hopf algebras, Ph.D. Thesis, Cornell University, Ithaca, New York, 1970.
- 3. M. E. Sweedler, *Hopf algebras*, Math. Lecture Note Series, Benjamin, New York, 1969. MR 40 #5705.

McGill University, Montreal, Quebec, Canada

Current address: University of Illinois at Chicago Circle, Chicago, Illinois 60680