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FACTORIZATION AND DISCONJUGACY OF THIRD
ORDER DIFFERENTIAL EQUATIONS

Abstract. Sufficient conditions for the factorization of y" +

py" + qy' + ry into a product of first order operators as well as

into a product of a first order and a second order operator are

given. Factorization into a product of first order factors is known

to be equivalent to disconjugacy. These conditions are simple

inequalities involving the coefficients.

We consider the third order linear differential operator

where p, q, and r are real valued continuous functions defined on some

interval I.

Equation (2) is said to be disconjugate on / if no nontrivial solution has

more than two zeros, counting multiplicities, on F A well-known—see

[15]—necessary and sufficient condition for disconjugacy of (2) and also

for the factorization of (1) of the type Ly = Psipzipiipoy)')')' with

pt(t)    0 for i = 0, ■ • •, 3 and / in / is condition

(W12): There exists two linearly independent solutions jju y2 of (2)

such that y2 > 0 and rV(yuy2) > 0 where W(yu y2) = y^ — y2y[.

It is also known—see [19]—that a necessary and sufficient condition for

the factorization of (1) into a product PQ where P is a first order operator

of the type Py = rxy' + r0y with rx{t) ^ 0 and Q is a second order operator

of the type Qy = q2y" + qxy' + q0y with q2(t) ^ 0 is condition

(W2): There exist two linearly independent solutions yx, y2 of (2) such

that W(yi,y2) > 0.

Moreover, given condition (W2), Q can be chosen such that yx and y2

are linearly independent solutions of Qy = 0.
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In this paper we obtain conditions on the coefficients sufficient for

(W12) to hold and also for (W2). Our conditions for (W12) include those

recently obtained by Kim [10]. The conditions for (W2) imply a result of

Kim [10, Theorem 1] under a weaker hypothesis. In addition our work

establishes a natural framework for the interpretation of some of these

results.

For other recent work on disconjugacy or oscillatory behavior of

solutions of third order equations see Hanan [6], Azbelev and Caljuk [1],

Lazer [11], Dolan [4], Barrett [2], and Jackson [9]. A summary of results

on oscillation theory and disconjugacy conditions of third order equations

as well as an extensive bibliography can be found in a recent paper of

Barrett [3].

For some recent work on nth order linear differential equations see

Hartman [7] and [8],Willett [16], [17], and [18], Levin [12], Nehari [14],

and Fink [5].

We will use the notation X ^ 0 for a matrix or vector X to mean that

each component is nonnegative. Similarly X > 0 will mean that each

component of X is strictly positive.

Several of our results make use of

Lemma 1. Let F be an n x n matrix of continuous real valued functions.

If, for t ^ a, F(t) ^ 0 and Y'(t) = F(/)7(r) with 7(a) > 0, then Y(t) ^ 0

for t > a.

Proof. Suppose some component of 7 is negative to the right of a.

Then there is some t0 > a such that, for some 1 ^ i ^ n, 7,(?0) = 0 and

every component of y is strictly positive in [a, t0). There is a f, in [a, /„)

such that y'iitj) < 0. But from 7' = F7 we have yKQ ^ 0. This con-

tradiction completes the proof.

For the remainder of the paper we assume that / = [a, b) where a is

finite or infinite and that p has a continuous second derivative and q a

continuous first derivative on I.

In addition to the operator (1) and equation (2) we consider the formal

adjoint operator L+ denned by

We are now ready to state our main results.

Theorem 1.   If q    0 and r ^ 0, then equation (4) has property (W2).

(3) L+y = f - py" + {q- 2p')y' - (r - q' + p")y

L+y = 0.
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Proof. Let y be a solution of (2) whose initial values are all positive

at a. Let P = % Q = Pq, R = Pr,

I y\ / 0     1 0
Y= j y  J   and  F = I   0     0 1/F

\Py"l \-R -Q o

Then we have Y' = FY and 7(a) > 0. Hence, by Lemma 1, y(t) > 0 for

/ > a. From the result in [19] it follows that there exist first and second

order linear differential operators M and N respectively, with leading

coefficients nonzero on /, such that L — NM. Hence—see [13, p. 25]—

L+ = M+N+, where + denotes the formal adjoint operators. To get two

solutions of (4) having property (W2) one can take any two linearly inde-

pendent solutions of N+y = 0 whose Wronskian is positive.

Since (F+)+ = L, we can reverse the roles of equations (2) and (4) in the

above argument to obtain the

Corollary 1. If q — 2p ^ 0 and q' — r — p" ^ 0, then equation (2)

satisfies property (W2).

Theorem 2.   If q 5j 0 and r ^ 0, then (2) has property (W2).

Proof. Let u and v be the solutions of (2) determined by the initial

conditions

(5) y(a) = 0,     /(a)=l,     y"(a) = 0,

(6) y(a) = 0,     y'(a) = 0,     y"(a) = 1

respectively. Let P, Q, R be as in the proof of Theorem 1. For

lu   u\ lu' v'\
Ti=   ,    I,    y* = Pyl,    y3 = F

\u    v I \u    V J
and

/ 0     1/F 0

F=[-Q    0 1

\ R     0 0

we note that the vector Y = [yx, y2, y3] satisfies Y' = FY. The hypotheses

imply F(0 <; 0.
Note that yx(a) = y2(a) = 0 and y3(a) > 0. Hence

y'M = -Q(a)yi(a) + y3(a) > 0.

Soy2 is increasing at a, hencey2 is positive in a deleted right neighborhood

N of a. For ? in /V, y[(t) > 0. Hence is also positive in N. Hence for a

in N we have T(a) > 0. Therefore by Lemma 1, Y(t) ^ 0 for t > a.
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From y[(t) = [1/F(0j72(0 ^ 0 for t > a we have ^(r) ^ ^(a) > 0 for

r > a. Since we already know yAj) > 0 for t in A we may conclude that

yi(t) > 0 for t > a. This concludes the proof.

By the result in [19], property (W2) implies that the operator L in (1)

can be factored as: L = MN where M and N are nonsingular differential

operators of orders one and two respectively and where u, u form a basis

for the solution space of Ny = 0. The conclusions of Kim's Theorem 1 in

[10] without the assumption of p ^ 0 then follow from the fact that u

and v are solutions of a second order equation.

A modification of the proof of Theorem 2 modeled after an argument

of Kim [10] yields another result which we state as

Corollary 2. // q ^ 0 and r ^ 0 then no nontrivial solution of (2)

satisfies a boundary condition of the type

(7) y(c) = 0  and y(d) = 0 = y\d) for a ^ c < d < b.

Proof. Suppose u is a nontrivial solution of (2) satisfying (7). Multi-

plying by —1, if necessary, we may assume u"(d) > 0. Let a be the first

number to the left of d such that w"(a) = 0. Then w(a) > 0 and w'(a) < 0.

Let v be the solution of (2) determined by the initial conditions d(ol) = 0,

z/(a) = w(a), v"(a) = 0 and let y = vv). Defining Y as in the proof

of Theorem 2 and arguing similarly we arrive at the conclusion y(t) > 0

for t > a. But this contradicts y(d) = 0.

Theorem 3. Ifq<^0,r^0,q- 2p' ^ 0 and q' - p" - r ^ 0, then
(2) is disconjugate.

Proof. The first two inequalities in the hypothesis imply, by Corollary

2, that no nontrivial solution of equation (2) satisfies a boundary condition

of type (7). Similarly the second pair of inequalities imply that no non-

trivial solution of equation (4) satisfies a boundary condition of type (7).

The conclusion then follows from the following known results in [1]: If (2)

has a nontrivial solution with three zeros on /, then there is a nontrivial

solution of (2) which satisfies a boundary condition of type (7) or of type

(8) y(c) = 0 = y'(c)   and  y(d) = 0  with a ^ c < d < b.

Furthermore, if (2) has a nontrivial solution satisfying (7) [(8)], then the

adjoint equation (4) has a nontrivial solution satisfying (8) [(7)].

Theorem 4. // r - pq - q' ^ 0, q ^ 0, q - 2p' <; 0, p(q - 2p') +

(q' — p" — r) + (2p' — q)' ^ 0, then (2) is disconjugate.

Proof. Determine solutions u, v of (2) by initial conditions (5) and (6).

Define F, Q, R as in the proof of Theorem 1.

Let ji = W{u, v). We show thaty^f) > 0 for t > a.
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For y2 = Py[, note that

lu v'\
y'z = (Py'iY = p\ „   J - Qyi = y*

\u     V J

Then the vector 7 = [yi,y2, y3] satisfies Y' = FT where

/    0 l/P 0\

F =       0 0 1.

\R-Q'   -Q/P 0/

First we show that j, > 0 in some deleted right neighborhood of a. Note

that j,0) = y2(a) = 0 and y3(a) = F(a) > 0. Now y'2(d) = y3(a) > 0

implies that y2 is positive in some deleted right neighborhood N of a.

Hence 72 > 0 and y( = (\jP)y2 implies jx > 0 on N.

The first two inequalities in the hypothesis imply that F(t) ^ 0. For

tteJVwe may conclude, from Lemma 1, that Y(t) ^ 0 for t > a and hence

also 7(0 ^ 0 for / > a. Fromy}(t) ^ 0 for / > a,j = 1,2,3, andy3(a) >

0, it follows that y^t) > 0 for t > a.

Proceeding as in the proof of Corollary 2 we show that equation (2)

has no nontrivial solution satisfying boundary condition (7). Similarly,

using the third and fourth inequalities from the hypothesis, and arguing

with respect to the adjoint equation (4) we show that (4) has no nontrivial

solution satisfying boundary condition (7) for any c, d in / with c < d.

The proof is then completed just as in Theorem 3.

The factorization L = MN is equivalent—see [13, p. 25]—to L+ =

N+M+ where + denotes the adjoint operator. In light of this, the con-

ditions of Theorems 1 and 2 are sufficient for the factorization of L+ [the

operator defined by the left-hand side of (3)] into a product of a second

order operator times a first order one.
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